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EXECUTIVE SUMMARY

This Final Repor covers research performed under Contract No. N00014-86-C-
2021 during the contra t period 28 October 1985 to 30 September 1989. Berkeley
Research Associates' eforts, in collaboration with the Laboratory for Computa-
tional Physics (LCP), hav focused on developing mathematical and computational
models which accurately and efficiently describe the behavior of complex physical
systems such as: chemically reacting flows; transition from laminar to turbulent
flow in reacting gas mixtures; laser-induced shock waves in an explosive medium;
initiation, propagation, extinguishment and structure of laminar flames.) The mod-
els, numerics and algorithms developed through this work are i ed in this
document in response to task orders 2.1 thru 2.6. -

In response to Task 2.1, Appendices A and Bescribework carried out in ex-
tending the Flux-Corrected Transport (FCT) flow models to three dimensions and
to generalized meshes. The extension to three dimensions required the development
of surface definition software and sophisticated data structures to avoid excessive
CPU-time overheads for the search operations involved. The hybrid method devel-
oped in combining the Finite-Element Method with the Flux-Corrected Transport
method (FEM-FCT) is useful for solving problems involving steady and unsteday
transonic and supersonic flow in irregular geometries.

The VOYEUR Graphics System is described, in Appendix C in response to
Task 2.2. It is used in conjunction with two instruments, namely a color hardcopy
device (a Tektronix 4115 compatible printer/plotter, VOYEUR being implemented
on a Tektronix 4115) or a DICOMED graphic output device. It is a menu driven
system which builds up fromsrn.ple set-up to more complicated plots compiled
from this initial information. -. , .

For Task 2.3, Appendices D thru H describe our work carried out in collab-
oration with LCIO on transverse and axisymmetric jets, mixing enhancement in
supersonic shear layers, unforced spatially-developing mixing layers and subgrid
closures of premixed turbulent combustion., In Appendix D, the effect of small,
random pressure fluctuations at the nozzle orifice on the growth of the mixing layer
is examined. Also, the results from numerical simulations of the evolution of the
Kelvin-Helmholtz instability for unforced, subsonic, compressible, axisymmetric,
spatially-evolving shear layer are presented; these particular results are in response
to Task 2.1. The numerical simulations of transverse jets into supersonic flows are
described in Appendix E and are conducted by solving the conservation equations of
mass, momentum, energy, and species densities using a fourth order FCT algorithm.
Some of the fundamental questions concerning the definition of a supersonic shear
layer and the effect of convective Mach number on the mixing and on the structure
of the shear layer are presented and examined in Appendix F. It is shown that the
convective Mach number describes the intrinsic character of the instability of a shear
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layer. Mixing is enhanced when the convective Mach number is reduced. In response
to both Tasks 2.1 and 2.3, in Appendix G two-dimensional numerical simulations of
the Kelvin-Helmholtz instability in compressible, spatially-evolving, unforced, pla-
nar shear layers are used to investigate the reinitiation of unstable vortex roll-up
near the trailing edge of the splitter plate. The process involved in roll-up reiniti-
ation is examined. It is shown that spreading of the mixing layer through vortex
merging depends strongly on the pressure field induced by the downstream events.
Finally, in Appendix H, a review of the extensive literature on subgrid closures and
other aspects of a LES of premixed turbulent combustion is presented.

In response to Task 2.4, Appendix I describes to use of time-dependent two-
dimensional numerical simulations to study the effect of the rate of energy :elease
on the regularity of the cellular structure of detonations in liquid nitromethane.
Chemical decomposition of nitromethane is described by a two-step model com-
posed of an induction time followed by energy release. The same expression is used
for the induction time throughout the calculations. The energy release rate and
its dependence on temperature were varied. A simplified equation of state based
on the Walsh and Christian technique for condensed phases ai i the BKW equa-
tion of state for gas phases is used. When mixtures of both phases are present,
pressure and temperature equilibrium is assumed. In the model, the walls of the
detonation chamber are assumed to heavily confine the liquid explosive. Boundary
layer effects are neglected. The solution thus simulates the detonation structure
near the center of a wide channel. The simulations show that the energy release
process controls whether the detonation dies, becomes one-dimensional, or becomes
multidimensional. Once the multidimensional structure is established, its regularity
is mainly controlled by the temperature dependence of the induction time, and to
a lesser extent by the energy release rate. Increasing the energy release time and
decreasing the activation energy generally improve the regularity. The simulations
also show a correlation between the regularity of the cellular structure and both the
change in induction zone thickness across the transverse waves and the shock front
curvature. When the change in the width of the induction zone is larger, the shock
has more curvature and the structure is more regular.

Task 2.5 deals with the development of implicit versions of FCT and the ap-
plication of these algorithms to the detailed study of flames. Appendices J thru R
deal extensively with this development. The importance of an implicit correction
of the FCT implementation is that it removes the stringent limit on the timestep
which explicit methods impose via the Courant-Friedrichs-Levy (CFL) condition.
Appendix J deals with the barely implicit correction itself. Appendix K describes
the detailed, two-dimensional model for flames, FLIC. It combines algorithms for
subsonic convective transport with buoyancy, detailed chemical reaction processes,
and diffusive transport processes such as molecular diffusion, thermal conduction,
and viscosity. The study of the development of cellular structures in rich and lean
hydrogen flames is presented in Appendix L. The model includes detailed hydrogen-
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oxygen combustion with twenty-four elementary reactions of eight reactive species
and a nitrogen diluent, molecular diffusion of all species, thermal conduction, and
convection. In Appendices M and Q, the effect of gravity on flame instabilities is
investigated. It is shown that the effects of gravity become more important as burn-
ing velocity is decreased which occurs as the lean flammability limit is approached.
Gravitational effects are shown to be insignificant in the nonrcacting jet. However,
it the reacting jet, gravity produces the relatively low-frequency instabilities (eg.
Kelvin-Helmholtz) typically associated with flame flicker. Appendix N is concerned
with the time-dependent two-dimensional numerical simulations of a shock propa-
gating through a compressible vortex. The scenarios presented are those of a strong
shock (i.e. the fluid velocity behind the shock front is approximately the same as
the maximum velocity in the vortex) and of a weak shock. Appendices 0 thru R
deal with the numerical study of diffusion flames.

Finally, Task 2.6 entails the developement of algorithms for triangular meshes.
The algorithm is described in Appendix S. In Appendix T, an adaptive finite ele-
ment scheme for transient problems is presented. Examples involving shock-shock
interactions and the impact of shocks on structures demonstate the performance of
the method. Considerable savings in CPU-time and storage can be realized even
for strongly unsteady flows. This is due to the method and the high degree of vec-
torizability that has been achieved on the CRAY-XMP-12 at the Naval Research
Laboratory for this code. A high resolution finite element method for the solution
of problems involving high speed compressible flows is presented in Appendix U.
The method uses the concepts of FCT and is presented in a form which is suitable
for implementation on completely unstructured triangular or tetrahedral meshes.
Transient and steady state examples are solved to illustrate the performance of the
algorithm. Appendix V gives one Berkeley Research Associates employee's view of
the future direction of the use of finite elements in computational fluid dynamics.
Appendices W and X describe the use of high resolution schemes for unstructured
grids (FEM-FCT) and the importance in accurately modeling complicated geome-
tries. Appendices X and Y also describes the use of the adaptive refinement method
for triangular and tetrahedral meshes and give several numerical examples to prove
its ability to accurately and efficiently handle difficult problems. Appendix Z de-
scribes the adaptive refinement method's application to transient problems.
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GENERATION OF THREE-DIMENSIONAL UNSTRUCTURED GRIDS
BY THE ADVANCING-FRONT METHOD

Rainald L6hner

Berkeley Research Associates
Springfield, VA 22150, USA

and
Laboratory for Computational Physics and Fluid Dynamics

Naval Research Laboratory
Washington, D.C. 20375, USA

and

Paresh Parikh

Vigyan Research Associates
Hampton, VA 23666, USA

Abstract F.1 Define the boundaries (surfaces) of the domain

The generation of three-dimensional unstruc- to be gridded.

tured grids using the advancing-front technique is de- F.2 Set up a background grid to define the spatial
scribed. While this generation technique has been variation of the estretching, and the
shown to be effective for the generation of unstruc- stretching direction of the elements to be gen-
tured grids in two dimensions, its extension to three- erated. The background grid consists of tetra-
dimensional regions required the development of sur- hedrons. At the nodes we define the desired el-
face definition software and sophisticated data struc- ement size, stretching and stretching direction.
tures to avoid excessive CPU-time overheads for the This background grid must completely cover the
search operations involved. After obtaining an initial domain to be gridded.
triangulation of the surfaces, tetrahedrons are gener- F.3 Using the information stored on the background
ated by successively deleting faces from the generation grid, set up faces on all these boundaries. This
front. Details of the mesh generation algorithm are yields the initial front. At the same time, find the
given, together with ,vamples and timings. generation parameters (element size, stretching

and stretching direction) for the new faces from

1 the background grid.
F.4 Select the next face to be deleted from the front;

In recent years a wide variety of algorithms has in order to avoid large elements crossing over
been devised for the generation of unstructured grids regions of small elements, the face forming the
around bodies of complex geometrical shapes. Among smallest new element is selected as the next face
the different techniques we mention Watson's algo- to be deleted from the list of faces.
rithm for Voronoi tesselations [1-6], the modified oc- F.5 For the face to be deleted:
tree method [7] and the advancing front technique F.5.1 Select a 'best point' position for the intro-
[8-101. Baker's implementation and optimization of duction of a new point IPIEi.
the Voronoi algorithm (6] has shown that fast and re-
liable grid generators for tetrahedral meshes can be F.5.2 Determine whether a point exists in the al
produced. We currently believe that the advancing ready generated grid that should be used in
front technique is the best approach, because it can lieu of the new point. If there is such a point,
easily be used for grid regeneration with directional set this point to IPIRW and continue search-
refinement [10]. The incorporation of directional re- ing (go to F.5.2).
finement in the Voronoi algorithm appears difficult F.5.3 Determine whether the element formed with
unless the reconnection of points based on the purely the selected point
geometrical Delauney criterion (6) is substituted by IPIEW does not cross any given faces. If it
some other criterion that incorporates directionality does, select a new point as IPEW and try
into the triangulation. Directional refinement is an again (go to F.5.3).
essential ingredient in any optimal 3-D algorithm for F.6 Add the new element, point, and faces to their
compressible flows. respective lists.

F.7 Find the generation parameters for the new faces
2. Algorithmic Steps of Advancinr-Front Generators from the backgrounA rrid.

The advancing-front grid generation technique F.8 Delete the known faces from the list of faces.
[8-101 consists of the following steps: F.9 If there are any faces left in the front, go to F.4.
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3. Definition of Surfaces .5 Generation of the Initial Front

Several approaches have been proposed in the lit- The generation of the initial front or surface tri-
erature to define the surfaces of objects [11]. The two angulation is carried out in two main steps. it) tho.
most common are: a) Boolean operations on surface line segments are divided into straight line segenwts.
patches, and b) Boolean operations on Solids. Both called sides, and b) the surface segments are trian-
have advantages and disadvantages. In order to be gulated, starting from the sides of the corresponding
compatible with the surface definition currently in use line segments.
in the aerospace and car manufacturing industry, we 5.1 Generation of sides

adopted the first approach. Moreover, in order to de-
fine surfaces or solid objects, we attempt to minimize Taking the background grid into consideration.
the manual input that is necessary as much as pos- each line segment is subdivided into straight line seg-
sible. To that end, we have adopted a hierarchical ments, called sides. The length of each side is de-
surface definition data structure. Three levels of data termined by interpolation from the background grid,
are allowed: points, lines and surfaces. Lines are ob- and can vary arbitrarily along the line.
tained by joining points, and surfaces by joining lines. 5.2 Triangulation of surface sements

The line-types currently available to the user are: Each surface segment is triangulated indepen-

- straight line segment (defined by 2 points); dently using a 2-D version of the advancing front grid

- parabolic line segment (defined by 3 points); generator. The substeps are the same as outlined
above (see section 2). The initial front consists of

- cubic spline segment (defined by 4 or more the sides corresponding to the lines that connect the
points). current surface segment to other neighboring surface

segments. The triangle size and stretching are corn-
The surface-types currently available to the user are: pedfrom The triaground gredbyintepoo

puted from the 3-D background grid by interpolation.

- plane (assumes all line segments lie in one plane); As the triangulator resides in a 2-D world, we need

- triangular isoparametric parabolic surface (12] to reproduce as faithfully as possible the 3-D surface
(defined by 3 parabolic line segments); in a 2-D domain. To that end, mappings between the

2-D and 3-D worlds are used that maintain approxi-
- rectangular isoparametric serendipity surface (12] mately the shape and size of the 3-D surface triangles

(defined by 4 parabolic line segments); in 2-D and vice-versa. The mappings used are:

- triangular Barnhill-Gregory-Nielson patch [13] - 3-D surface segment to unit 2-D triangle or
(defined by 3 arbitrary line segments); square (z, y, z -- f, q) , and

- bilinear transfinite Coon's patch [13] (defined by - stretching and shearing of unit 2-D triangle or
4 arbitrary line segments). square to approximate 3-D surface segment in a

Observe that so far we have not implemented C- This2-D domain (t, q - 4"i, h).

orC2-continuous surface patches. The program was Thsmapping process is illustrated in Figure 1. When
oritteninaos surfac e so t he amdwio computing the element size during the triangulation,
written in an 'open-end'-mode, so that the addition a ahsaew rce sflos

of further line segment-types or surface-types will be t 1 tao te cuen as osi

carried out as needed. T.1 Transform the current 2-D position to the 3-D
surface segment via the unit triangle or square:

4. Background Grid t' - C 7 Z' o Z.
T.2 Determine from the background grid the desired

The background grid consists of tetrahedrons, element size and shape.
and is used to define the desired spatial variation of T.3 Transform back the desired element size and
element size, stretching and stretching direction. The shape to the 2-D domain.
background grid typically consists of only a few ele-
ments, so that manual interactive input with mouse Transformation T.1 is also used to transform back the
presents no significant burden. If the user desires to new points that have been added due to the triangu-
construct a uniform mesh, then the background grid lation of the surface segment.
consists of only one element that covers the domain The assembly of all triangles obtained from the sur-
to be gridded completely. If a rapid and significant face triangulator yields the initial front for the 3-D
change of element size is desired, the grid generator advancing front grid generator. As an example, we
itself may be used to generate first a background grid. show in Figure 2 the surface triangulation of an F-
At the nodes of this generated grid we then define the 18. The surface definition used, shown in Figure 2a,
desired element size, stretching and stretching direc- is given by 325 points, 73 lines and 32 surfaces. The
tion, and proceed to generate the final mesh. Within background grid, shown in Figure 2b, consists of 1635
an adaptive refinement process, the current grid and tetrahedrons and 390 points. The resulting surface
flow solver solution are used as the background grid triangulation, depicted in Figures 2c,d has 9,962 tri-
to generate a new, better grid for the flow problem angles and 5,122 points.
under consideration.
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6 Checking the Intersection of Faces average about 40 close faces need to be checked, this
way of checking the crossing of faces is very (' -

One of most important ingredients of the advanc- intensive. When it was first implemented, this portion
mng front generator is a reliable and fast algorithm for of the grid generation code took more than 80% of th,+

checking whether two faces intersect each other. We CPU time required. In order to reduce the work load.

have found that even slight changes in this portion

of the generator greatly influence the final mesh. As a three-layered approach was subsequently adopted

with so many other problems in computational geom- a) Min/Max-search: The idea here is to disregard
etry, checking whether two faces intersect each other all face-face combinations where the distance be-
seems trivial for the eye, but is complicated to code. tween faces exceeds some prescribed minimum dis-
The problem is shown in Figure 3. We base our check- tance. This can be accomplished by checking the
ing algorithm on the following observation: two tri- maximum amd minimum value for the coordinates
angular faces do not intersect if no side of either face of each face. Faces can not possibly cross each other
intersects the other face. The idea then is to build if at least for one of the dimensions i = 1,2, 3 they
all possible side-face combinations between any two satisfy one of the following inequalities
faces and check them in turn. If no intersection is
found, then the faces do not cross. With the notation
defined in Figure 4, the intersection point is found as maz1,e,1 (ZA ,' Z) <minac2 (: A z,) - d ,(7a)

1 23Mnae(Zi i xi ) af,2(i Zi r
Xf + a 1 I + = m-2 4 + a ,(')4 ,'c) > ma(1)2 A B, CC+d7

where we have used the L-vectors as a covariant basis. where A, B, C denote the corner points of each face.
Using the contravariant basis £' defined by b) Local element coordinates: The purpose of check-

ing for face-crossings is Lo determine whether the
= 6; () newly formed tetrahedron breaks already given faces.

The idea is to extend the previous Min/Max-criterion
where 6' denotes the Kronecker-delta, we obtain the with shape functions of the new tetrahedron. If all
ai as the points of a given face have shape-function val-

ues N i that have the same sign and lie outside the
i f [-t, 1 + t] interval, then the tetrahedron cannot pos-

a2 = O( - 2, (3) sibly cross the face. We therefore disregard this face.

S f . c) In-devth analysis of side-face combinations: All
I the faces remaining after the filtering process of steps

Because we are only interested in a triangular surface a) and b) are analyzed using side-face combinations
for the y I' 2 -plane, we define another quantity sim- as explained above.
ilar to the tird shape function for a linear triangle: Each of these three filters requires about an or-

der of magnitude more CPU-time than the preceding
a= 1 - at 

- a2  (4) one. When implemented in this way, the face-crossing

Using the ai, two faces can be considered as 'crosed' check required only 25% of the total grid generation

if they only come close together. Then, in order for time. When operating on a vector machine, we per-

the side not to cross the face, at least one of the ai  form loops over all the possible combinations, build-

has to satisfy ing the L, 60i a', etc. in vector mode. Although the
vector lengths are rather short, the chaining that re-

t > maz(-a',a' - 1) ,i = 1, 4 (5) suits from the lengthy mathematical operations in-
volved results in acceptable megaflop-rates on the

where t is a predefined tolerance. By projecting the CRAY-XMP.
g onto their respective unit contravariant vectors,
we can obtain the actual distance between a face and 7. Data Structures to Minimize Search Overheads
a side. The criterion given by Eqn.(5) would then be The operations that could potentially reduce the
replaced by (see Figure 5): efficiency of the algorithm to O(N1 5 ) or even O(N 2 )

are (see section 2):

1 .a) Finding the next face to be deleted (step F.4).
maz(-a', a' - 1) ,i = 1,4 (6) b) Finding the closest given points to a new point

(step F.5.2).

The first form (Eqn.(5)) produces acceptable grids. c) Finding the faces adjacent to a given point (step
If the face and the side have points in common, then F.5.3).
the as will all be either I or 0. As both Eqn.(5) and d) Finding for any given location the values of gen-
Eqn.(6) will not be satisfied, we need to make special eration parameters from the background grid
provision for these cases. For each two faces, six side- (steps F.3 and F.7). This is an interpolation
face combinations are possible. Considering that on problem on unstructured grids.

3



The verb 'to find' appears in all of these operations. LQUAD( 7, IQ) < 0 the quad is full
The main task is to design the best data structures for = 0 the quad is eipty
performing the search operations a)-d) as efficiently > 0 the number of points
as possible. stored in the quad

I Heap List for the Face-Search .. JAD( 8,IQ) > 0 the quad the pres t

Heap lists are well-known binary tree data struc- LQUAD( SIQ) > 0 the position in the
tures in computer science [14,15]. The ordering of quad the present
the tree is accomplished by requiring that the key of quad came from
any father (root) be smaller than the keys of the two LQUD(:4,IQ): for LQUAD(7, IQ) > 0 :
sons (branches). An example of a tree ordered in this the points stored in this quad
manner is given in Figure 6, where a possible tree for for LQUAD(7, IQ) < 0 :
the letters of the word 'example' is shown. The let- the quads into which the
ters have been arranged according to their place in present quad was subdivided
the alphabet. We must now devise ways to add or We store at most four points per quad. If a fifth
delete entries from such an ordered tree without al- point falls into the quad, the quad is subdivided into
tering the ordering. Because we have to add faces as four, and the old points are relocated in their respec-
entries in the tree in this case, we replace 'entry' by tive quads. Thea the fifth point is introduced to the
'face'. The ideas that follow use the heap-sort and new quad into which it falls. If the quad is full again,
heap-search algorithms [14,15] to determine quickly the subdivision process continues, until a quad with
which face should be deleted next from the front. vacant storage space is found. This process is illus-
Adding a new face: The idea is to add the new face trated in Figure 8. The newly introduced point E

at the end of the tree. If necessary, the internal order falls into the quad IQ. As IQ already contains the
of the tree is re-established by comparing father and four points A,B,C and D, the quad is subdivided into
son pairs. Thus, we start at the bottom of the tree four. Points A,B,C and D are relocated to the new
and work our way upwards. In this way, the face with quads, and point E is added to the new quad EQUAD+2.
the smallest associated key RFACE(IFACE) remains at Figure 8 also shows the entries in the LQUAD-array, as
the top of the list in position LREAP(1). The pro- well as the associated tree-structure. In 3-D, we store
cess is ;llustrated in Figure 6, where the letters of the eight points per octant, and subdivide an octant into
word 'example' have been inserted sequentially into eight suboctants if a ninth point falls into it.
the heap list. In order to find points that lie inside a search
Removing the face at the top of the heanr list: The region, we go down the levels of the octree, eliminat-

idea is to take out the face at the top of the heap ing at the highest possible level the octants that lie
list, and replace it by the face at the bottom of the outside the search region. In order to find the point
heap list. If necessary, the internal order of the tree is closest to a given point, we again go down the levels
re-established by comparing pairs of father and sons. of the octree. If the octant into which the point falls
Thus, we start at the top of the tree and work our is empty, we collect into a list all the points lying in
way downwards. In this way, the face with the small- the octants that emanated from the subdivision giv-
est associated key will again remain at the top of the ing rise to the present octant. The closest point is
list in position LREAP(1). This process is illustrated then chosen according to geometric arguments from
in Figure 7, which shows the successive removal of the this list.
smallest element (alphabetically) from the previously With the octree, it takes O(logs N) operations to
constructed heap list. locate all points inside a search region or to find the

It can be proved that both the insertion and point closest to a given point.
the deletion of a face into the heap list will take 7.3 A Linked List for the Face/Point Search
O(log 2(IHEAP)) operations (14,151 on the average. In the present case, we need to develop a stor-

7.2 Ouad/Octrees for the Point-Search age scheme that helps us answer the question: which
are the faces adjacent to a given point? Since the

Quadtrees and Octrees are used extensively to number of faces surrounding a point varies from
speed up the nearest neighbor searches in graphics point to point, but usually fluctuates within certain
algorithms (11], battle management (16], particle sim- bounds, we use the following scheme. Define an array
ulations [17], and to define solids for grid generators LPII(1:IPOII) over the points and another array
(7]. Samet (18] gives an extensive survey of the field. LFAP(1-3.MFAPO), where IPOII denotes the number
Their main role here is to provide an O(log N) search of points and MFAPO the maximum number of storage
algorithm for arbitrary point distributions. We de- locations. Then store in:
scribe the main ideas behind their application for 2-
D regions, from which the extension to 3-D regions is LPOIICIP0IU) the place IFAPO in LFAP where
straightforward. Define an array LQUAD(I:7,MQUAD) the storage of the faces
to store the points, where MQUAD denotes the max- surrounding point IpOIN starts
imum number of quads allowed. For each quad Iq LFAPO( 3,IFAPO): > 0 the number of
store in LQUAD(1:7,IQ) the following information: stored faces
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< 0 the place JFAPO in elements. Figures 10a,b show the surface triangula-
LFAPO where the tion of the model, where the mirroring capability of
storage of the faces the code was invoked. Figure 10c shows the model in
surrounding point the windtunnel. The generated grid had 21,811 points
IPOIN is continued and 119,861 tetrahedrons. Figure 10d shows the grid

LFAPO(1:2,IFAPO) : 0: an empty location along the wall of the tunnel, and one can observe the
> 0 : a face surrounding point clusterings around the nose, the wing-roots and

IPOIN the tail.

We allowed only two storage locations per en- 8.2 Missile launcher: Figure 11 shows a generic mis-
try in LFAPO because in 2-D there are typically two sile launcher model. Again, only half the model is
faces adjacent to a point. In 3-D we use nine or ten required for computational purposes. The surface def-
storage locations. Once this storage scheme has been inition was given by 39 points, 44 lines and 19 surface
set up, we can store and find the faces surrounding segments. The background grid had 48 points and 132
points. The process of adding a face to the linked list elements. Figures 10a shows the complete surface tri-
LPOIN/LFAPO is shown diagramatically in Figure 9. angulation. The generated grid contains 14,508 points
Changing the lists from 'face' to 'element,' we can and 75,894 tetrahedrons. Figure 1 lb shows the grid
also store in this way the elements that surround each along the axis of symmetry, and one can again ob-
point. serve finer grid zonings close to the missile and the

7.4 Interpolation on Unstructured Grids launcher.
The time needed to generate a new element de-

Interpolating information from one unstructured pends heavily on the amount of faces that are checked
grid onto another has been an outstanding problem for possible crosing (see above, section 2). We find
for several years. There are at least two major at- that for larger grids, the number of faces that are
tempts to solve this problem (19,20], none of which checked decreases on the average, as the distance be-
guarantees an optimal O(N log N) algorithmic pro- tween 'colliding fronts' is larger. For the grids shown,
cess. With the data structures described above, it the rate at which new tetrahedrons were generated
is possible to guarantee interpolation in O(N log N) varied between 480-490 tetrahedrons per second on
operations by proceeding as follows [21]: the CRAY-XMP-24 at NRL (using one processor).

- Given an arbitrary point, find the closest points
on the grid from which the information is to be 9. Conclusions
interpolated by using the octree. This paper describes a mesh-generation proce-

- Find the elements surrounding these points from dure for three-dimensional regions. Input require-
a linked list that stores the elements surrounding ments to define objects or surfaces were minimized
points. by adopting a hierarchical structure consisting of

- Find from this list of elements, the element into points, lines and surfaces. In order to reduce CPU-
which the point to be interpolated falls. requirements, several optimal search algorithms were

- Interpolate. adapted into the present context. The described de-
velopments are by no means limited to advancing-

The region of close elements may have to be en- front grid generators, but should also be useful for
larged by layers of elements using the linked list, be- the construction of Voronoi tesselations and Delau-
cause for badly deformed elements, the closest points nay triangulations or tetrahedrizations. Future de-
on the background grid may not belong to the element velopments will center on
into which the point to be interpolated falls. As a re- - better surface definition,
sult of this, many elements could be tested. However, - easier input of background grids,
this slight disadvantage is offset by the guarantee that - better criteria for the introduction of points,
the overall procedure requires only O(N log N) opera- - coupling of the grid generator with flow solvers,
tions, regardless of grid stretching, holes, corners, and and
other topological features that deteriorate the per- - adaptive remeshing.
formance of the other available methods. Moreover,
practical experience indicates that in more than 90% 10. Acknowledgements
of the cases, the element-into which the point to be
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Fig~. 2 F-18: Surface Definition

Fig,2b F-18: Background Grid



Fig. 2c F-18: Surface Triangulation

Fig. 2d F-18: Surface Triangulation
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Fig. lib Pathfinder: Surface Triangulation of Model

Fff, 10c Pathfinder: Complete Surface Triangulation

Fig. 10d Pathfinder: Grid in Plane of Symmetry



Fi.gIla Missile Launcher: Surface Triangulation

Fig, Llb Missile Launcher: Grid in Plane of Symmetry
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APPLICATIONS OF THE METHOD OF FLUX-CORRECTED
TRANSPORT TO GENERALIZED MESHES

Rainald L6hner and Gopal Patnaik
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Springfield, VA 22150

Jay P. Boris, Elaine S. Oran, and David L. Book

Laboratory for Computational Physics
Naval Research Laboratory, Washington, DC 20375

FCT on Unstructured Grids

A new technique for numerical solution of fluid equations has been developed by combining the
Finite-Element Method with the method of Flux-Corrected Transport. The resulting hybrid
method, called FEM-FCT, is useful for problems involving steady and unsteady transonic and
supersonic flow in irregular geometries. The main computational advance grows out of the need
to find a prescription for limiting fluxes through the sides of a triangular or other nonquadrilateral
zone when arbitrarily many zones may meet at a given vertex (L6hner et al., 1986).

The technique described here employs a version of Zalesak's (1979) fully multidimensional
FCT on a triangular grid. The underlying transport scheme can be any standard high-order finite-
element or finite-volume method, and need not be based on triangular zones. In the present work
a Taylor-Galerkin scheme (Lbhner et al., 1985) has been used for this purpose. The low-order
scheme employed in Zalesak's formulation is obtained by adding a numerical diffusion term to
the high-order scheme. Antidiffusion removes this added diffusion except where the flux-limiting
process modifies the antidiffusive fluxes to prevent unphysical extrema from forming. For each
fluid equation all the high-order fluxes which tend to increase the value in a particular zone, and
separately all the fluxes which tend to decrease the value there, are considered together. If in
either case a maximum or minimum is formed anywhere which is not produced by the low-order
scheme, all the participating fluxes are reduced by the same factor until the extraneous peak
or valley is eliminated. The result for the transported quantity is a value which is intermediate
between the high- and the low-order results, with just enough of the latter present to guarantee
that no extrema form (except those produced physically).

For the test problems used in this paper to illustrate the method, the temporal discretization
is a two-step (predictor-corrector) Lax-Wendroff-type method and the spatial discretization is
done with triangular finite elements (L6hner et al., 1985). A Lapidus diffusion term of the form

h max [0, at.V 1] a
l I al al

where At is the timestep, h is the zone size, 1 = Vv/IVvl is the unit vector in the direction of the
gradient of v = IvI, and u is the vector of dependent variables, is applied in expansion regions to
prevent the formation of "terraces." Running times on a one-pipe Cray X-MP were 42-58 ps per



grid point per timestep. These are about a factor of three slower than efficient FCT algorithms
on rectilinear grids, e.g., JPBFCT (Boris, 1981). The penalty results from the need to include
gather-scatter operations in the algorithm because physically contiguous quantities need not be
logically contiguous.

After optimization of the flux-limiting technique through tests on one-dimensional prob-
lems, the method was applied to a variety of unsteady flows, including spherical blast waves
and shock waves diffracting around hemispheres and half-cylinders. Because the algorithm is not
coordinate-timesplit the simulations maintained symmetry perfectly, so that, e.g., the projection
of a spherical blast wave on the z-axis is identical to that on the r-axis. Tests were also carried
out on the problem of a planar shock impinging on a complex structure composed of two irregu-
lar objects (Fig. 1). A strong (Mo = 10) shock hits the two structures shown, producing a bow
shock and several rarefactions and contact discontinuities, as well as several reflected secondary
shocks (e.g., below the structure on the left). Note the high resolution of the shocks and contact
discontinuities; the jumps are resolved over 1-2 zones, in contrast with the number (4-6) needed
in conventional finite-element schemes. Note also that those contours which are supposed to be
straight remain straight, i.e., they essentially ignore the orientation of the underlying grid. Figure
2 shows the results of another calculation, in which a strong (M8 = 25) shock interacts with a
channel aligned parallel to the shock front. At the time shown (t = 1.2 in normalized units) the
incident (unreflected) shock has passed beyond the edge of the frame to the right. At the bottom
it has reflected off the right wall of the channel and is seen propagating back towards the left.
Focusing occurs because of the geometry, resulting in the formation of the "eye" just to the right
of the middle of the channel. Note the very strong rarefaction fan attached to the top of the left
wall of the channel; features like this in hydrocode calculations are ordinarily very susceptible to
dispersive errors or (in the case of FCT algorithms) terracing.

One of the advantages of triangular gridding [Fig. 1(a) and Fig. 2(a)] is that it is easy
to refine the mesh in regions where improvements in resolution are needed. The strategy we
have followed is one of enrichment, not redistribution. That is, we introduce new triangles in
the region of interest, rather than moving triangles from elsewhere. We have implemented an
automatic adaptive mesh refinement routine in FEM-FCT (L~hner, 1986). The algorithm can
be switched on locally whenever a predefined feature of interest can be identified. The switch
is activated by estimating the local error and refining wherever it exceeds a prescribed limit.
Since as a rule only small regions require refinement, the overhead involved in mesh refinement
is essentially negligible. The timestep, however, is set by requiring that the maximum Courant
number be less than unity, so the running time increases inversely with the minimum zone size.

If the physical feature requiring enhanced resolution disappears, the algorithm automatically
does away with the extra triangles which had been introduced. Because it "remembers" the
original triangulation, it is able to restore the grid to its exact form prior to the refinement. This
type of algorithm lends itself readily to vectorization, and a mesh change (performed every 5-10
timesteps) requires only - 100 s on the Cray X-MP-12.

The techniques described here have been extended to axisymmetric (r-z) systems. They have
also been used to construct a three-dimensional code (based on tetrahedra), which has been used
to solve several supersonic steady-state problems.



A Barely Implicit Correction to FCT for Nearly Incompressible Flow

For explicit finite-difference schemes the timestep At is restricted by the Courant condition
max[(c + v)At/Azx < 1, where Ax is the zone size and the maximum is taken over the whole
mesh. In many nearly incompressible fluid dynamics systems the flow velocity v is much less than
c, the speed of sound. We are usually interested in phenomena which take place on the slow time
scale, so it is of interest to develop implicit algorithms for which the limiting condition becomes
vAt/Ax < 1. Since positivity-preserving techniques are needed to maintain sharp concentration
or other gradients, we are motivated to construct an implicit FCT algorithm (Patnaik, et a.,
1986).

Analysis by Casulli and Greenspan '1_84) has shown that the only quantities in the finite-
difference form of the fluid equations which have to be differenced implicitly (i.e., defined on the
advanced time level) are the pressure in the gradient term of the momentum equation and the
velocity in the divergence term of the equation for the energy density E. The other terms of the

equations can be differenced explicitly, in the present case by using a form of JPBFCT (Boris,
1981). The essential computational steps include an explicit prediction of density, momentum,
and energy, determination of an implicit pressure correction by solving an elliptic equation, and

corrections to the momentum and energy obtained from the pressure correction.
This procedure (called Barely Implicit Correction, or BIC) can be readily generalized to

work with other explicit schemes, including FEM-FCT. To date, BIC has been implemented in
one- and two-dimensional Cartesian explicit FCT routines. Figure 3 illustrates the ability of

BIC-FCT to propagate a contact discontinuity without the introduction of additional diffusion.

Figure 4 shows the damping of sound waves by BIC-FCT. Damping is seen to be negligible when
the method is made semi-implicit, i.e., when the Crank-Nicholson parameter w satisfies w = 0.5.
Damping increases if the timestep or zone size is increased. In these and other problems to which
it has been applied the Mach numbers were as low as 0.01, so that the timestep was up to an
order of magnitude longer than would have been possible in an explicit code. The time required
for one computational timestep compares very favorably to that required by the explicit two-step
JPBFCT module.

Applications have been made to two-dimensional flames (v - 10 m/s, c -- 300 m/s) and to
the transition to turbulence in jets. The decrease in running time permitted by barely implicit

differencing makes it possible to include more detailed chemistry models in such simulations.
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Introduction

VOYEUR is an interactive graphics system designed to allow users
to "watch" their calculations as they progress. This gives the user a
useful tool with which to visually inspect the correctness of his
calculation. VOYEUR (on the Tektronix 4115) also allows the user the
option of two types of permanent recording - color hardcopy (with a Tek
4115 compatible printer/plotter) or DICOMED graphic output. Its menu
driven system of commands is designed to get the user up and running
with a simple set-up in a short period of time and then allow him to
build from there for more complicated plots.

Within VOYEUR there are structures - think of them as objects -

that form a three level hierarchy. A complete tree diagram of all the
commands appears at the end of this manual.

The first structure is the JOB. The JOB isn't a real object in that
it doesn't manifest itself directly on the screen. Rather, a JOB is an
organizational tool allowing you to group related PICTURES and thence
DETAILS together.

The second level to the hierarchy is the PICTURE which we will
discuss in more detail in the PICTURES section of the manual. Each
picture has a window attached to it which can display simulation results
in one of four different formats. There are four kinds of PICTURES in
VOYEUR. They are called PIXEL, VECTOR, GRAPH and SEGMENT. PICTURES
from more than JOB can be displayed on the screen at the same time.
This allows several different calculations, perhaps originating from
different processors, to be watched concurrently.

The third and final level to the hierarchy is the DETAIL - it will
be discussed in the DETAILS section. There are four kinds of DETAILS ii
VOYEUR - they are LABEL, DATA, AXIS and BORDER DETAILS. DETAILS are
always attached to a PICTURE,- although there can -be ina-ny .differer.t
DETAILS (or none) attached to a PICTURE.
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If you were to use your imagination, you could think of this

hierarchy as forming a tree shape. The JOB would be the root and trunk
of the tree with the PICTURE being the branches and the DETAIL being the
leaves. In fact, it might look something like this:

": " DETAIL

oQ...,. PICTURE

If, perhaps, you are more scientifically inclined, it might look more like

this:

Detail Detail Detail Detail Detail Detail Detail Detail Detail
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In this manual we will "climb" that tree. Starting at the root,
we'll cover the commands that create and modify a JOB. Moving to the
branches, we'll take a look at PICTUREs and how to create and change
them. We'll have reached the leaves of the tree when we discuss
DETAILS.

Afterwards, we'll come back to the ground and discuss some of the
things that help hold this tree upright. We will look at the TV Guide and
the Color Map and then take a peek at MACROs. By that time, you should
have a very complete understanding of how to use VOYEUR. There will be
some practice files available to help you on your way.

At the end of this manual, there are two helpful sections. The
first is the VOYEUR Quick Reference - it lists all the commands in the
VOYEUR command tree along with some brief explanatory text. The
second is a command card - it's really a pictorial representation of the
Quick Reference without the comments.

3
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EXECUTING VOYEUR

VOYEUR is started from the DCL command line by typing in the
keyword VOYEUR followed by an optional TV guide name (TV guides are
explained in a later section). After starting VOYEUR, the top of the screen
will contain a list of menu choices, one of which is highlighted. This
highlighted selection is called the active command. The second line
contains a statement describing the active command. The right most key
in the second set of function keys at the top of the keyboard is marked
with a large arrow pointing to the right. Depressing this key selects the
command to the right of the active command, continuing to the right most
command, then wrapping around to the beginning of the line. In this way, a
simple help message can be examined for each available command.

Commands can be executed in one of two ways. Depressing the
RETURN key executes the highlighted or active command. Another shorter
mechanism is to simply touch the key corresponding to the first letter of
any visible command. This is the mechanism used to describe each of the
commands in this manual. The character entered to execute the command
is in Bold, and the remaining portion is in italics. The first character of
each command on a line is always unique.

Executing a command will either bring up a new set of commands on
the top line, or it will perform an action. In order to "back up" to the
previous command level, press the BUMP key, which is the left most key on
the top of the keyboard. Successive depressions of the BUMP key will
bring you back to the top of the command tree.

Commands which require more information to execute will normally
inquire for the data on the second line. After entering the answer to the
questions presented, it is necessary to press the RETURN key.

5
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Shifted
Clear List Diconed Clear Clear S -o
List Guide Fl1a s e Mao Preview Refresh Monitor[DOZJOOOO[O
Bump List List List View Preview Start

Job Picture Detail Map Refresh

Un-Shifted

The picture at the top of the page is of the sixteen function
keys that can be found at the top left of the Tek 4115B keyboard.
VOYEUR gives each of these keys a definition. They represent commands
that work similarly to the commands you are used to entering by using
the first letter. The ones on the top are generated by shifting the key
(holding down the shift key while pressing the appropriate function key).

Perhaps the most important of these is the Bump button. As
you enter successive commands in VOYEUR, you go deeper into a tree.
The Bump button moves back up one level closer to the top command line
each time it is pressed. To go to the top command line from anywhere in
the command tree should take no more than six touches of the Bump
button.

The next most useful of these is the Monitor button. Anytime

after you have put a PICTURE into the display list, pressing the Monitor
button will cause VOYEUR to start displaying those selected PICTURE's.
VOYEUR will keep refreshing the screen until it is told to stop.

You can start and stop the refreshing of the screen with the
Start Refresh and Stop Refresh buttons. They work just as their name
implies Start Refresh will cause VOYEUR to start refreshing the screen
and Stop Refresh will cause VOYEUR to stop refreshing the screen. You
should note that the Monitor button will not restart the refreshing of the
screen after the Stop Refresh button has been pressed.

Two useful buttons are the View Map and Clear Map buttons.
These will cause VOYEUR to either put a bar showing each of the colors
at the bottom of the screen (View Map) or to remove it (Clear Map). The

6
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location of the color bar cannot be changed. It always appears at the
bottom of the screen.

There are two buttons that are very useful when you are
deciding on the layout of your screen. They are the Preview and Clear
Preview buttons. The Preview button works quite a bit like the Monitor
button, but it doesn't cause VOYEUR to start displaying the actual
PICTURE data. Instead, a filled box the size of each PICTURE's window is
put on the screen along with DETAIL's. You can use this to set things up
even when there is no data to display in the mass memory of the APTEC
I/O Computer system. As its name implies, the Clear Preview button
wipes the preview off the screen.

There are five buttons used to look at your definitions. They
are the List Guide, List Job, List Picture, List Detail and Clear List
buttons. As with the rest of the function keys, their purpose is readily
deduced from their names. The list Job will display the current active
Job definitions (name, system file etc.). The other Lists work similarly.
To remove this list from the screen, simply press the Clear List button.

The final button is the Dicomed Flash button. Pressing this
button will tell VOYEUR that you want a snapshot of the screen to be
written into a Dicomed file. For more information on using the Dicomed
features of VOYEUR, take a look at the "Getting Hardcopy" section of this
manual. Note that the Help key has not yet been implemented.
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JOBS

As we saw in the Introduction, the root of the hierarchy in
VOYEUR is the JOB. A JOB represents a collection of related PICTURE's
and thence DETAIL's. For example, you might group all your different
temperature PICTURE's under one JOB. Or perhaps, you might put the
temperature, density, and velocity PICTURE's for a certain kind of
calculation under one JOB.

Creating a JOB

No matter what organization you wish to use, you will still
create a new JOB the same way. From the root of the command tree,
enter the following command sequence:

Edit Generate Job

Remember to enter "E", then "G", then "J", and that no Returns
are necessary. Once you do this, VOYEUR will ask you for a name to
identify this new JOB. You should think of an appropriate name (one that
you will remember, because you will need to know this later) and enter
it followed by pressing the RETURN key. One thing to remember is that
JOB names (in fact ALL symbols and n~rneP within VOYEUR) are case
sensitive. That means that the names 'foobar' and 'FOOBAR' are not the
same.

The next thing that VOYEUR will ask you will be the name of
the JOB's system file (if there is to be one). The system file is a mass
memory file that contains parameters used by the simulations. These
two items are all that VOYEUR needs to set-up a JOB. You can go from
there to generate new PICTURE's and DETAIL.

Copying an existing JOB

Another way to create a new JOB is to copy it. When you copy
a Job, everything that is contained by that job is copied also. The
command sequence for copying Jobs is:
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Edit Copy Job

VOYEUR will then prompt you for two things: the name of the Job to copy
and what to call the new Job.

Changing an existing JOB's System File

If you decide to change the name of a JOB's system file, you
can use another command sequence. It is :

Edit Modify Job

VOYEUR will ask a question that in effect means "Do you wish to modify
this JOB?", and will give you the name of the current active JOB. If you
do, then press RETURN, otherwise, type 'no' and then press RETURN -
VOYEUR will ask you for a new JOB name. After VOYEUR has the right
JOB, it will ask you for the name of the JOB's system file. You should
give the full name of the new system fiie and press RETURN.

Deleting an old JOB

In VOYEUR, you can remove old JOB's very easily. All you need
to do is enter this command sequence:

Edit Remove Job

VOYEUR will now ask you for the name of the JOB you wish to
remove. Just type in the name and press RETURN. You should remember
that names are case sensitive. BE CAREFUL! Once a JOB is removed,
there is no way to instantly bring it back! It is always a good idea to
save everything to a TV guide before deleting a JOB.
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PICTURES

Pictures, it has been said, are worth a thousand words. Well,
pictures are what VOYEUR is all about. The whole idea is to display your
thousand words' worth of pictures with enough speed and style to make it
all worthwhile. Of course, there are all kinds of pictures, but with
VOYEUR, you need be concerned with only four kinds. VOYEUR refers to
them as PIXELs, GRAPH's, SEGMENT's and VECTOR's. Each kind of Picture
has different attributes and diffefent associated commands. T+-ey-a4eo
share some co~mmnn rp ,'uiromonts.

All the Pictures that VOYEUR displays share some common
requirements. For instance, the data describing all four Picture types
must be stored in the mass memory of the APTEC I/O computer system.
Furthermore, unlike most files, it must be contiguous. That is to say that
the data cannot be stored as little pieces scattered throughout the
memory. If it is, VOYEUR will give you some very strange results.

If your Picture's data file is being created as VOYEUR is
running, it must be opened as a shared file so that both VOYEUR and your
creating process can access it at the same time. Each type of PICTURE
uses a different format for the data stored in mass memory.

PIXEL

The first type of Picture that we will discuss is the PIXEL
Picture. In its simplest form, a PIXEL Picture is a collection of numbers
representing the color of each pixel in the Picture. It is simply one byte
value per location in the screen window stored in mass memory as a
contiguous array of data. You create a new PIXEL Picture, after you have
created a JOB to contain it, with this command sequence:

Edit Generate Pixels

You should remember that each command is entered by pressing
its first letter with no use of the RETURN key. VOYEUR will ask you if
this new Picture is to be attached to the current active JOB. If this is :he
case, simply press RETURN. If you want your new Picture attac-,e( c
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another JOB, then say no and then give VOYEUR a new JOB name - the one
this new Picture is supposed to be attached to. VOYEUR will now ask you
what you want this new Picture to be named. Just think of a suitable
name and enter it followed by pressing RETURN. Next, VOYEUR will ask
you for the name of the mass memory file that is to contain the data
describing your Picture. These are the only parameters that the operator
must enter when generating a PICTURE. There are several characteristics
that can be modified however and the next step gives you the opportunity
to change them. What you will see now is a command line that looks like
this:

Name Offset Location Width Height File-size Pixel Refresh

This is identical to the command line presented while
modifying the Picture using the Edit Modify Picture command. You can
change the mass memory file name where VOYEUR will get the PIXEL data
with the Name command. This will cause VOYEUR to prompt you for the
name of the mass memory file in which you are storing your data. This
file must reside on the APTEC mass memory disk, and it must be
contiguous. It need not exist when creating the Picture entry, but it must
be present before attempting to display it or an error will occur. The very
next thing that you will want to do is tell VOYEUR how wide and how tall
your Picture is supposed to be. This is accomplished with the Width and
Height commands. The range for widths is 0 to 1280 and the range for
heights is 0 to 1024. PIXEL uses a different scale here than any other type
of PICTURE or DETAIL. Each dimension is measured in absolute screen
coordinates. The dimensions of the Tektronix 4115 is 1280 x 1024. In
every other case in VOYEUR, dimensions are based on a scale of 4096 x
3277, what Tektronix calls terminal coordinates. This difference is
required since the data in mass memory is mapped directly to the screen,
one byte per pixel, and the user must be able to specify the exact
dimensions of the window.

Every new Picture created by VOYEUR starts out in the lower
left-hand corner of the screen. Most of the time, you will want to put
your Picture someplace else on the screen. By entering the Location
command, you can tell VOYEUR where on the screen you want your Picture
to be displayed. You select the location not by entering coordinates, but
by rotating the thumb wheels on the keyboard until the outline of your
Picture is where you want it to be. You should remember to set the width
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and height before you try to change the location of your Picture because a
Picture that is zero pixels by zero pixels is very hard to see!

Sometimes, the "real" data of any one Picture doesn't start at
the beginning of a file. It may be the case that you are putting two
Pictures into the same file one after the other. In this case, you need to
tell VOYEUR some more information in order for it to find the right data.
The Offset command can be used to tell VOYEUR how many bytes into the
file specified by the Name command the data for this particular Picture is
stored. Suppose that you had two different Pictures stored in the same
mass memory file. To display both of them, you would generate two
Pictures - the first would have an offset of 0 and the second would have
an offset of n - where n is the number of bytes used in the first Picture.
Or, you could use the offset to look at just one portion of the Picture -
sort of a close-up.

A command that is used frequently in conjunction with the
Offset command is the File-size command. The File-size command is
used to tell VOYEUR how many bytes of information a Picture uses. By
default, VOYEUR assumes that file size is the number specified with the
Width command times the number specified with the Height command. For
example, suppose you had a Picture that was 10 by 10. VOYEUR would at
first assume that the file size was 100. But what if you only wanted to
look at the first fifty bytes of information? You would use the File-size
command with a value of 50 to tell VOYEUR to read only the first fifty
bytes. If you wanted to look at the last fifty bytes, you would first give
VOYEUR an Offset of 50 and then a File-size of 50. With the File-size and
Offset commands, you can selectively pick any consecutive series of bytes
to be displayed as one Picture.

On most screens, a pixel is a very small dot whose size cannot
be changed. With VOYEUR, you can have pixels that are any size you want
(within reason). You can also change the way individual pixels are written
to the screen. All the commands for these are in a sub-level that can be
reached with the P ixel command. After entering it, you will get a
command like looking something like this:

Width Height Axis Mode Type
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You use the Width sub-command to tell VOYEUR how many
units wide you want each pixel to be. This Width can be any integer in the
range of -1280 to 1280. The Height sub-command is used similarly - with
a range of -1024 to 1024. You should remember that changing the size of
the pixels will change the size of the overall Picture.

Arbitrarily, VOYEUR writes pixels from left to right starting
at the top of the screen and working down - it starts by stacking pixels
horizontally. You can change to a vertical stacking with the Axis sub-
command. You may have noticed that pixel widths and heights can be
negative. This doesn't mean that you will have pixels that collapse in on
themselves, however. A negative pixel dimension will change the
direction of pixel writing. This can be used in conjunction with the Axis
command to flip the Picture. For example, if you specify a negative pixel
width (not changing the axis) the pixels will be drawn from right to left -
performing a horizontal flip of the Picture. A negative pixel height will
cause your pixels to be written from bottom to top - thus performing a
vertical flip. Note that data is always read from mass memory from the
beginning of a file in a continuous stream to higher addresses.

There are really two types of pixel data. The simplest to
understand is known as raw pixel data. That is the one point one value
method - no encoding of the data to make it smaller. The other type of
pixel format is called run-length encoded data. VOYEUR can use both types
of data - but they can't be interchanged in the same Picture. To tell
VOYEUR which kind of pixel data you are using, you would use the Type
sub-command. VOYEUR will prompt you for the pixel type. You should give
VOYEUR a value of 0 if you are using raw data or a value of 2 if you are
using run-length encoded pixel data. There is a good discussion in the
4115 Option 3A manual (look under PX: format DMA transfers) that
explains the difference. Run-length encodes pixel data uses 3 bytes per
code group. The first two contain the repeat count, up 64K, and the third
byte contains the pixel value to be repeated. It is useful when large
portions of the screen are to be painted with the same color, but can take
up a lot more space and be slower if a lot of DETAILS are being painted.
Type values of 1 and 3 mean that the pixel data is unnormalized. This is
useless within VOYEUR, since there is no way to specify surfaces.
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The final pixel sub-command is the Mode sub-command. With
it, you can change the pixel ALU writing mode. This specifies the way the
pixel data in memory is combined with the new pixel data overwriting it.
If A is the value currently in the pixel, and B is the new value being
written, the following table describes the value resulting in the pixel
position after writing with all of the mode values that are valid on the
4115.

0 no change
7 A XOR B
11 B (i.e. just overwrite the pixel)
12 A AND B
15 AORB
17 A+B
18 A-B

The most common and default value is 11, which just results in the new
data overwriting the old. Another useful value is 7, which results in a
pixel value of 0 wherever the new pixel and the old pixel are the same, and
a different color everywhere else. It could be used to determine where
successive plots have changed for example. I have yet to find any earthly
use for the rest of these modes, but they are there if needed. If anyone
comes up with a snazzy use for the different ALU modes please let me
know.

REFRESH

The process that is creating all this pixel data is presumably
running the whole time and generating new frames. This means that the
Picture you see on the screen needs to be updated at some specifiable
interval. You can tell VOYEUR how you want your Picture refreshed with
the commands that come under the Refresh command. The refresh
parameters specify conditions under which the picture can be delayed.
That is, VOYEUR will hold up and do nothing until the particular refresh
conditions are satisfied. Thus, if you have more than one picture on the
screen, normally the first picture will have some additional conditions
attached to it, while the rest will have the continuous attribute. The
effect of this is to wait until the particular refresh conditions are
satisfied, then draw all of the pictures together. The screen will then
freeze until the next set of refresh conditions are valid.
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Entering the Refresh command will give you the following
command line:

Continuous Time Synchronize Lockstep Value

If you want your Picture to be updated all the time, you should
use the Continuous sub-command. This means that there are no refresh
conditions, and VOYEUR will start re-drawing the Picture the instant it
has finished the previous one.

The Time option is used to re-draw a picture at intervals. As
soon as a picture is started to be drawn, the current time is saved. When
attempting to draw the picture again, VOYEUR will hold up until the
previous time plus an interval has elapsed before re-drawing that picture.
Hence, if it takes 5 seconds to re-draw the screen, putting a delta time of
less than 5 seconds will have no effect. After entering the Time sub-
command, VOYEUR will prompt you for a delta time between re-draws.
This should be entered in the standard VAX delta time format:

dddd hh:mm:ss.cc

where d stands for day, h for hours, m for minutes, s for
seconds and c for hundredths of a second. You can omit the values, but
must always use the leading delimiters. This means that two minutes can
be entered as either '0000 00:02:00.00' or '0 :02'. As another example, 5
seconds should be entered as '0 ::05'.

The third option for refresh parameters is to synchronize the
re-drawing of the Picture with a parameter stored in the APTEC mass
memory system file. Normally, this is used with a variable containing
the time step. You tell VOYEUR the specifics with the Synchronize
command. VOYEUR will ask you a series of three questions. The first
thing it will ask for will be the offset, from the beginning of the
containing JOB's system file, for the parameter. This should be a multiple
of four as the values in the system file are always four bytes long. The
second question will be the parameter increment. The third and final
question will be whether or not you wish VOYEUR to hold the calculation
while it is refreshing the Picture.
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This is the only mechanism where the programs in the array
processors handshake with VOYEUR. In order to use this mechanism, the
array processor must be running a program capable of this handshake
protocol. The array processors should read the value in mass memory and
if it is negative, the array processor calculates a new set of pictures
based on that value. When the calculation is complete, the array processor
should write a 0 into the parameter, then wait, looking for a negative
value again. VOYEUR, meanwhile, will write a new negative value into
mass memory whenever the calculations should proceed, and wait until
the mass memory parameter becomes 0 before displaying anything.

If the parameter value is positive, the array processor should
produce new pictures continuously. The handshake mechanism will fail if
a positive value is entered for the parameter increment value, but the
operator could create a data detail with a reference to the same offset,
and write a positive value into that location.

Normally, calculations of physical problems are performed
interactively, each iteration being one step. This parameter usually is the
number of steps between pixel dumps to the mass memory. For example,
say that -10 is entered as an increment parameter. VOYEUR will write -
10 to start the calculations, the array processor then performs 10 steps,
dumps the results to mass memory as a PIXEL file, and halts, writing the
memory parameter to 0. VOYEUR then detects the 0 and draws the
pictures, and writes the parameter back to -10, thus starting the entire
process over again.

The calculation can be held or not. If it is held, then VOYEUR
will only write the memory parameter with 0 after all of the pictures
have been drawn. Otherwise, VOYEUR will immediately write the
parameter and the array processors can continue calculating while VOYEUR
is refreshing the screen.

A fourth option is also to have the Picture refreshed with a
step value. This is done with the Lockstep command. The array
processors calculate continuously, producing PIXEL data during some
interval number of steps. The lock step option asks for an increment. The
current value of the memory parameter is read at the beginning of the
monitor process. Thereafter, VOYEUR will wait until the value in that
parameter is greater than or equal to the initial value plus the specified
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increment. Normally, this is the iteration count, or time step. The
questions asked are the same as the first two for the Synchronize option.

Finally, the fifth refresh option is to have the Picture re-draw
be based on a specific value or flag in the mass memory. This is
accomplished with the Value sub-command. VOYEUR will ask you for the
value's offset in the system file and what value it should look for to
signal a refresh. VOYEUR will simply wait until the array processors
write that value into memory before refreshing. If the value is not
changed, this becomes a single trigger, because the refresh condition is
automatically satisfied from that point forward.

Graph

The second type of Picture we will discuss is referred to as
the Graph. Graph data is stored in mass memory contiguously just like
PIXEL's data, except that the values are strings of valid 4115 escape
sequence commands. They must be filled out to the nearest 512 byte
boundary, unless you explicitly change the file size. Use carriage return,
space, or line feed characters to null fill, since they are interpreted by
the 4115 as NOP's. Any escape sequences can be specified, but be careful
specifying segment numbers below about 1024, since VOYEUR stores all of
its DETAIL as separate segments. It is quite possible to destroy the
screen data, and/or get all kinds of invalid parameter errors by redefining
or deleting these segments. Normally, it is not necessary to set up the
window or viewport, since VOYEUR lets you do it from the command line.

To get started making a VOYEUR Graph, you use the following
command sequence (again from the top command line):

Edit Generate Graph

VOYEUR will ask you if this new Picture is to be attached to
the current active JOB. If this is the case, simply press RETURN. If you
want your new Picture attached to another JOB, then say no and then give
VOYEUR a new JOB name - the one this new Picture is supposed to be
attached to. VOYEUR will now ask you what you want this new Picture to
be named. Just think of a suitable name (perhaps the hardest thing to do
in VOYEUR!) and enter it followed by RETURN. Next, VOYEUR will ask you
for the name of the mass memory file that contains the data for you
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Picture. You should enter the full name of the file to avoid any possible
ambiguities that might arise.

Now, after all this, you will get a command line that is similar
to the Pixels command line:

Name Offset Location File-size Refresh Size Window

The first five commands should look familiar to you. They
each work the same way that their Pixels counterparts do. The two new
commands are Size and Window.

Remember the Pixels commands of Width and Height? Well,
the Size command is really telling VOYEUR similar information except
that this command will not affect the File-size value (which now gets its
information from the file system on the APTEC). When you enter the Size
command VOYEUR will prompt you for the window size for your Graph
Picture. This Size is a pair of integers (width, height) with width in the
range 0 to 4096 and height in the range 0 to 3276 .This command only
establishes the screen size for your Graph and should be used before the
Location command so that there is something of enough size to see to
move!

The Window command is really a path to several sub-

commands that affect the characteristics of your Graph's screen window.
This window defines the viewport that is used to show all of the escape

sequence commands. After entering this command, you will see this new
command line:

Border Wipe Origin Extent

The Border sub-command is a way for you to create and/or

alter the border around your Graph. This border surrounds the viewport
and can be turned off and on with the BORDER key on the lower right side

of the keyboard. You can use the Index sub-sub-command to tell VOYEUR
what color you want the border to be. The Visibility sub-sub-command is
use to tell VOYEUR if the border is to be seen or not. Pressing the RETURN

key after entering this command will toggle the border visibility.

19



VOYEUR Rev 2.0

You can use the Wipe sub-command to specify the index used
when the window is 'erased' prior to re-drawing. This becomes the
background color used for drawing your data, so you should choose an index
that mixes well with the colors selected for displaying your data. In
other words, a red background would make red vectors difficult to see.

The Origin sub-command is used to specify what numerical
coordinates correspond to the origin of the window. This is used in
conjunction with the Extent sub-command which tells VOYEUR what
numerical coordinates correspond to the point maxwidth, maxheight in
your window. Notice that if the origin is 0,0, and the extent is 32767,
32767 (the default), then a vector drawn from 0,0 to 32767, 32767 will
go from the lower left corner to the upper right corner. Vectors will be
clipped if they attempt to draw outside the window.

Segment

The third type of Picture in VOYEUR is called the Segment.
Segment pictures use the format described under the SG: parameter in
Chapter 3 of the 4115 Option 3A manual. The basic layout contains a
segment number followed by picture processor commands. Picture
processor commands are described later. This PICTURE is created with
the command sequence:.

Edit Generate Segment

VOYEUR will ask you if this new Picture is to be attached to
the current active JOB. If this is the case, simply press RETURN. If you
want your new Picture attached to another JOB, then say no and give
VOYEUR a new JOB name - the one this new Picture is supposed to be
attached to. VOYEUR will now ask you what you want this new Picture to
be named. Just think of a suitable name (perhaps the hardest thing to do
in VOYEUR!) and enter it followed by RETURN. Next, VOYEUR will ask you
for the name of the mass memory file containing the data for you new
Picture. Give VOYEUR the full file name and press RETURN - you will now
get a very familiar command line:

Name Offset Location File-size Refresh Size Window
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In fact, all these commands work just like their Graphcounterparts. The only difference between a Graph and Segment the kindof data and the way that data is stored in the mass memory file.
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Vector

The fourth and final type of Picture is called a Vector. This

type of picture corresponds to the DS: parameter described in the 4115
Option 3A manual. It is identical with the Segment PICTURE, except that
the picture processor commands are not headed by a segment
specification.

Picture Processor Commands

Picture processor commands are binary sequences used to
instruct the 4115 to do various things. They are fully documented in
Chapter 11 of the 4115 Option 3A manual. There are several VAX FORTRAN
callable subroutines that are available to write picture commands to a
file in a format for display. They can be linked into a program cn the VAX
by including the following file specification in the link command line:

user2:[reusservoyeur]vmove.obj

The following functions are supplied:

fno = vopen( name)

Opens a file for putting commands into of the specified name. The name is
a character descriptor. fno is an integer returned which is then used for
writing to the specified file. At this time only one file can be open at a
time, although this will later be rectified.

fno = vopena(name)

Same as vopen, except the name is a null terminated ascii string rather
than a character descriptor.

vmove( fno, i, j)

fno is the open file number returned from vopen or vopena, i is the x
direction, and j is the y direction. This is an absolute location and is
relative to 0,0. Notice that changing the window origin in the Vector
command will offset this location. This is a 16-bit move command.
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vdraw( fno, i, j)

Draw a vector line from the previous position to the specified i,j
coordinate pair. Note that i,j is relative from the previous location. This
is a 16 bit draw command.

vcolor( fno, icolor)

Changes the color of the succeeding vectors and/or markers. The color can
be viewed by executing a view color map command.

vstyle( fno, istyle)

Changes the line style of the succeeding vector commands. The various
line styles are described in the 4110/4120 series command reference
manual under the Set Line Style command.

vmarker( fno, itype)

Draws a marker at the current position of the specified type. Marker
types are described in the 4110/4120 series command reference manual
under the Set Marker Type command.

Changing Existing Pictures

Perhaps you don't want to create a new Picture, but only to
modify an existing one. This is a very simple thing to do. From the root of
the command tree, just enter this sequence:

Edit Modify Picture

VOYEUR will now put up a line containing the name of the
current active Picture and ask you if that is the Picture you want to
modify. If you say yes (by pressing RETURN) you will then get the same
command line that you did when you created that Picture. If you say no,
VOYEUR will then ask you if you want to modify a Picture attached to the
current active JOB. If you say yes to this new question, you will then be
asked for the name of the Picture you wish to modify and then get that
Picture type's command line. If you say no, VOYEUR will ask you for the
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Picture type's command line. If you say no, VOYEUR will ask you for the
name of the JOB that contains the Picture you wish to modify and tmen ask
you for the name of that Picture. Once again, you will get the same
command line as when you created the Picture.

All the commands will have the same functions that they did
when you created the Picture. The command line that you will get will
depend on what type of Picture you select to modify.

Copying an Existing Picture

One quick way to generate a new Picture is to copy an old one.
When you copy a Picture, the Picture type and the attached DETAILS come
along with it. The command sequence for copying a Picture is similar to
the one used to copy a Job:

Edit Copy Picture

Voyeur will then ask you for the new Picture name and the name of the
Job that is to contain this new Picture. Next, it asks you for the name of
the old Picture. You can modify this new Picture just like any other
Picture.

Deleting a Picture

PICTUREs are deleted with the command sequence

Edit Remove Picture

VOYEUR will ask you if the Picture you wish to delete is in the
current active JOB. If it is, just press RETURN and VOYEUR will ask you for
the name of the Picture to delete. If the Picture you wish to delete is
under another JOB, then say "no" to the current JOB question. Now VOYEUR
will ask you for the name of the JOB that contains the Picture you wish to
delete. Given this, VOYEUR will ask you for the name of the Picture to
delete. Give VOYEUR the Picture name, and then you are done - the Picture
is deleted from the memory of the machine.
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DETAILS

DETAILS are parts of the Picture used to make the display
more presentable. Detail can also be used to interact with the
simulation(s) being performed. There are four kinds of Detail: LABEL,
DATA, AXIS, and BORDER

DETAILS are not independent entities. Instead, they are
attached to Pictures - much the same way that Pictures are attached to
Jobs. The Detail's position is considered to be relative to that of its
owning Picture with the location (0,0) being the lower left-hand corner
of the Picture. This means that (-100,-100) is below and to the left and
(100,100) is above and to the right and so forth. Normally the user will
not have to worry about the position, since the thumb wheels are used to
move DETAILS around. Moving a picture will automatically move all of
the DETAILS attached to it.

Label

Labels are used to put a character string in the display. To
generate a Label Detail is quite simple. From the root of the command
tree, simply enter the following sequence:

Edit Generate Label

Remember that you only use the first letter of each command
and that you don't use the RETURN key. Once you have entered the
sequence, you will see a command line that looks like this.

Character-size Location Slant Rotation Index Bold Text

The first thing that you will want to do is enter the text of the label.
This is accomplished with the Text command. At the prompt, give
Voyeur the text of your label, which you should enter as a single line
terminated with RETURN.

The next thing to do is select the location of your label. To
accomplish that, use the Location command. You can use the thumb
wheels to move the label to the desired location and then strike any key
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to terminate the move and return to the label command line. Should you
decide that you really did not wish to move your label, just press the
Bump button and the move will be aborted. This will work only of you
haven't struck a key - telling VOYEUR that you were finished moving
your label. If the Bold parameter is not set to one, then the text will
appear very strange as you move it, although it will be okay when you
stop.

If you are trying to move a label and it looks like you are
adjusting the location of a bowl of spaghetti, this is the problem.
Simply select the Bold command and enter 1. The mechanism used for
moving is to place the screen in XOR mode and write the data once to
make it appear and then writing it in the same location to erase it.
Bolding works by drawing the text in one location, then moving up and to
the right and drawing it again, then down and to the left, etc. Thus
moving bolded text will cause it to destructively interfere with itself.
Re-select the proper bolding value after the detail has been moved.

The remaining commands at this level deal with the way in
which the label is put on the screen. At first, your new label is
displayed in what one might call "plain text." You can use these
remaining commands to change the color of your text, its rotation, how
italicized it is and how thickly it's drawn (using the Bold command
discussed above). Lets say that you like big labels. At first, your label
is written in size 13 characters, which results in about 80 characters
filling one line across the screen. You can tell Voyeur to change the size
of the characters with the Char-size command. You give Voyeur an
integer in the range 0 to 50 or so and terminate it with RETURN. If you
use a. size of 0, then you will have invisible characters This value is
actually the number of pixels separating each character. Each character
is 3*n wide and 4*n high where n is the size. Remember that this is on a
scale of 4096 x 3277 for the entire screen.

Next, you may want to add a little pizazz to your label by
italicizing it. This can be done with the Slant command. You specify
the slant in degrees from the vertical - a positive value is a slant to the
right and a negative value is a slant to the left. Slants that are odd
multiples of 90 ° will result in a label that is a straight line and should
be avoided.
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There will be times that you don't want your label horizontally
on the screen. You can use the Rotation command to turn the label about
the lower left-hand corner of the first character. VOYEUR will ask you
for a number of degrees to rotate the label. This number can be either
positive, meaning rotate clockwise, or negative, meaning rotate
counterclockwise. There is no problem with rotations that are multiples
of 900 as there is with the Slant command. The Rotation command,
combined with the Slant command can be used to perform flips of your
label Detail. The Rotation command is useful for creating label for the
left or right side of a Picture.

You change the color of your label with the Index command.
Voyeur will ask you for the index of the color you wish to have your label
drawn in. Indices are integers from 0 to n and correspond to one color in
the current color map and n corresponds to the number of colors
available in your system. You should remember that changing the color
map will change the color that any one index represents.

Data

The second type of Detail is the Data Detail. The Data Detail is
basically a Label Detail with an additional feature. You can read a value
from the mass memory and attach it to a Data Detail. The data in mass
memory is an actual value instead of a vector position or pixel color.
This allows the addition of "important" numbers such as maxima or time
steps to your pictures.

You generate a Data Detail in much the same way that you
generate a Label Detail except the initial sequence is slightly different:

Edit Generate Data

At this point, you will see a command line that looks similar to the Label
command line.

Char-size Location Slant Rotation Index Text Bold Offset Write

The Character size, Location, Slant, Rotation, Index and Boldcommands
work the same as they do for Labels. The Text command is slightly
different, however. Instead of entering plain text, you are really
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entering the C version of a format statement. The general syntax of a C
format line is

text %<width.precision>conversioncharacter text

where the items in bold type are required. The percent sign indicates the
beginning of a numeric definition. The width is the minimum size for an
integer field and precision is the number of decimal places. The
conversion character specifies the type of number that is to be
displayed. The valid conversion characters for VOYEUR are:

d convert to decimal format
o convert to octal format (unsigned)
x/X convert to hex format (unsigned)

x specifies lowercase digits a-f
X specifies uppercase digits A-F

e/E convert to "E" format
m..m . nnnnnE ± xx or
m..m . nnnnne . xx

with case selection the same as for x-format
and n's specified by precision (default - 6)

f convert to floating point format
m..m. nnnnnn

with n's specified by precision (default = 6)
g convert to d, e or f depending on which is shorter

One thing that you should remember is that there should be only one
number field associated with any one Data Detail.

Several examples of the different formats are:

1. Text = %d

The value is written in decimal format. The number of
characters used to display the value is exactly those required, without
leading blanks. For example if the value of the data was 156, the above
format would display:

Text = 156
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2. Text = %e

The value is written in exponential format. For example if the
value of the data was 156, the above format would display:

Text = 1.56xe02

3. Text = %g

This is the most common format. The value is interpreted as
a floating point value and the format which results in the fewest
characters output is used, of %d, %f, and %e. That is, if the value is an
integer, it is displayed without a floating point sign. If it is a very large
or very small number it is displayed using exponential format, and if it
is intermediate in value, it is displayed using the %f format.

There is an additional command on the Data command line. It
is the W rite command, and with it you can write a value into the Aptec
mass memory while VOYEUR is running. This is handy when you want to
be able to "talk" to one of your processes. The Write, command will ask
you for a value and will also specify the type is expected. It is perfectly
okay to enter integer data when floating point format is expected, since
the decimal point is automatically appended.

Perhaps the most important command in this line is the Offset
command. This is how you tell VOYEUR where to find the number to be
displayed. In essence, it is the distance in bytes from the beginning of
the system file specified when the containing JOB was created.
Numbers associated with Data DETAILS are to be stored as four byte
floating point numbers, so the second Data element in a file would have
an offset of 4, the third 8 and so on. If you make a mistake in your
offset, you will get unpredictable results.

Border

The third type of Detail that you will encounter in VOYEUR is
the Border Detail. It's use is rather self explanatory, it generates a
border around a picture. It is invoked with this sequence

Edit Generate Border
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and it gives you a command line that looks like this:

Index Style Enable Disable

The sub-commands associated with the Border Detail control
the style, color, and existence of borders. Index works the same way
here as it has in other places - it selects a color for the border. The
Style command is used to define the type of line used to create the
border. The different styles of borders and their number codes are:

0

1 --------------------------

2

3

4 - - - - - - - - - - - - -

5

6

7

Finally, one can either Enable or Disable a border. Enablq turns a border
on, and Disable turns it off. When you enable or disable borders, you
specify which of the four sides you are changing. They are associated
with the sub-commands Top, Bottom, Left, and Right.

AXIS
The fourth type of detail is the Axis Detail. It is used to

define axis or grids for a picture. Like the other DETAILS, it is invoked
with the sequence:

E dit Generate Axis

and it will give you a new command line that looks like this:
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Label Marks Axis-xy-loc Style Rotation Index Kind Total length

The Style command is the same as in the Border command,
and the Index has the same effect as in the previous detail, that is, it
changes the color. You specify the length of the Axis with the Total-
length command. As far as an Axis is concerned, the size of the screen
is 4096 X 3256, so an Axis that is half as wide as the screen would have
a length of 2048.

The Axis-xy-loc command is used to move the axis. Just
position your axis with the thumb wheels and touch any key. As usual,
the Bump button will abort the move if you happen to change your mind.

To tell VOYEUR that you want a different type of axis, use the
Kinds command. You will be prompted by VOYEUR to enter a code number
corresponding to the type of axis you want. At this time, the only
supported type is linear.

Axis are marked off in discrete sections with something called
a tick mark. You can specify the characteristics of the tick marks on
your axis from within the Marks command. It will give you a new
command line that looks like this:

Count Length Per-value

You change the number of tick marks with the Count sub-
command. Be careful not to ask for too many tick marks or your axis
will become quite crowded.

The size of the tick marks is specified with the Length sub-
command. Here you give two values - one for the length of the major
tick marks and one for the minor. Lengths can be either positive or
negative. A negative length causes a tick mark to be drawn on the "other
side" of the axis. Very long lengths can be specified to draw a grid
across the display.

The Per-Value command is used to tell VOYEUR the number of
minor tick marks between major tick marks. You should not use a
negative number here as it could cause problems. Otherwise, just about
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anything else is okay. Normally the count is a multiple of this value,
since major tick marks are usually desired on each end of the axis.

Major tick marks are also where the labels are placed. So the
Count and Per-value commands also determine where the labels occur,
and how many of them.

The Label command is used to determine the format and layout
of the major tick mark labels. Like the Marks command, Label will give
you a new command line. It should look something like this:

Format Char size Distance Rotation Slant Index Values

The Char-size, Rotation, Slant and Index commands work in
just the same way as all the other commands by the same name. The
only unfamiliar commands here are the Format and Values commands.

The Values command is used to determine the starting and
ending values for the axis After entering it, VOYEUR will prompt you for
the two values. They should be separated by either a comma or a space.

Closely related to the Values command is the Format
command. Format works the same way that the Text command works for
the Data Detail. After entering this command, VOYEUR will prompt you
for a C style format line to place at each of the major tick marks. The
values for the numeric fields are calculated automatically from the
minimum and maximum specified with the Values command. For
example, suppose that you had an axis that represented time in whole
seconds. A typical label format for such an axis would be something like
this:

'Time (Seconds) = %d'

Normally, the entire format string is '%g', which results in a
single number that is the smallest possible representation for the label
value.

Finally, VOYEUR needs to know how far from the axis it should
put your label. You can specify this with the Distance command.
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VOYEUR will prompt you for a new distance which you should enter as an
integer within a reasonable range, such as -50 to +50. A negative
distance will place the label on the 'other' side of the axis as opposed to
a positive distance.

Changing Existing DETAILS

The same commands apply to changing DETAILS as well. The
only difference is that Generate creates new ones and Modify alters
existing ones. When you want to modify a Detail, you use the sequence
(as always from the top command line)

Edit Modify Detail

VOYEUR will then ask you to either use the thumb wheels to
place the pick cursor over the Detail you wish to modify and strike a key
or to press the Bump button and enter the Detail's number. After either
method, you will be given the same command line that you had when you
created the selected detail. The commands on that line will do the same
things as they did before. Note that the detail number is used for very
crowded regions where the pick cursor doesn't have the resolution to
pick a specific detail.. The numbers are displayed by touching the List
Picture or List Job function keys.

The detail will start to blink when selected to indicate which
detail was actually picked. To make it stop blinking, simply touch the
Location command, and then press BUMP.

Copying a Detail

You can copy DETAILS just as easily as you can copy Jobs and
Pictures. The command sequence is even similar:

Edit Copy Detail

VOYEUR will now ask you to select a Detail in the same manner
as you did to select a Detail to modify. It then makes a copy of that
Detail. Note that the detail is overlaid on top of the copied detail, so you
must pick it and move it to another location before being able to see it
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Deleting old DETAIL's

When you decide that you really didn't want that DETAIL, you

can delete it from the memory of the machine. To do this, enter the
following command sequence - from the root of the command tree.

Edit Remove Detail

VOYEUR will now show you the screen and all the DETAILS that
you have defined. You should use the thumb wheels to position the cursor
over the DETAIL that you wish to remove and then press any key. You can
use the BUMP button to select the Detail by number. REMEMBER! once a
DETAIL is deleted, it cannot be easily resurrected!

Suggestions

The easiest way to learn about VOYEUR, and particularly about
axis detail is to sit down at the 4115 and generate some. For the Axis on
the left hand side of the picture use a label slant of 270 degrees, and an
axis rotatiun of 90 degrees. Experiment using tick mark lengths equal to
the height or width of the picture, giving grid marks. Also try various
combinations of count. and per-value amounts.

In Data details, the most common format used is %g. For

example, if the format is "STEP NUMBER = %g", the step number will be
picked up in standard DEC floating point format from mass memory and
displayed as an integer if there is no fractional part. Since it is usually
much easier to generate floating point values in array processors than
integers, this is preferred.
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The TV Guide

Earlier, we saw that the JOB, PICTURE and DETAIL formed what
could be thought of as a tree. Well, there are a few more elements to the
picture. The first is called the TV Guide. Each time that you generate or
remove a JOB, PICTURE or DETAIL, that information is placed in or
removed from the internal TV Guide. Think of the TV Guide as a script
that controls your session witlh VOYEUR. A TV Guide can contain several
different JOBs, so if you want a pictorial representation, try thinking of
a grove of trees:

. .,

Saving a TV Guide

Generally, there are so many items in the TV Guide that to
redefine them each time you wanted to use VOYEUR would be time
consuming. VOYEUR gives you the ability to store your TV Guide in a
standard text file so that you can read the information in again at a later
time. To save your TV Guide you would enter this command sequence
from the root of the command tree:

Write TV Guide
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At this point, VOYEUR will ask you for the name of the file that is to
contain the TV Guide. You should give VOYEUR a standard file name that
includes any necessary directory and device information.

Reading A TV Guide

The TV Guide file wouldn't do much good if it could only be
written. That's why there is another command sequence to read a TV
Guide. From the root of the command tree, enter this sequence:

Read TV Guide

Now, VOYEUR will ask you if you want to remove the current internal TV
Guide from the memory. Most of the time you will want to say yes.
There may be times, however when you wish to add two previously
separate TV Guides together. In this case, say no. Next, VOYEUR will ask
for the name of the disk file containing the TV Guide to be read. You
should enter a standard file name that includes any needed device or
directory information.

Changing the TV Guide

There are two ways to modify an existing TV Guide. The first
is to use the commands of VOYEUR to change the internal TV Guide and
then write it out to a file. This is perhaps the easiest, but if you prefer,
you can use one of the system editors to modify the TV Guide disk file.
You should be careful to maintaining the syntax of the TV Guide or it will
give errors when you try and read it, or display very strange things on
the screen.
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The Color Map

The other supporting element that we will discuss here is the
Color Map. The Color Map holds all the color definitions for you session
with VOYEUR. Like the TV Guide, the Color Map has an internal (in
memory) and a disk representation. When you first start, VOYEUR gives
you a default internal Color Map, but you may wish to edit some of the
colors to more closely suit your needs.

All the commands to alter colors in VOYEUR can be found under
the main command called Color. After you enter this command, you will
see the following command line:

Default Modify Stretch

You can use the Default sub-command to reload the default
Color Map if you decide that you've messed up the colors beyond all hope
of repair. Remember that you only need to press the first character of
any command and that the RETURN key isn't needed.

When you wish to change a color, you use the Modify sub-
command. VOYEUR will put up a grid and allow you to move the thumb
wheel to select the color to modify. It will then put up a box shaded
with that color that displays the values for four things: Index, Hue,
Lightness and Saturation. You can alter the last three with the Hue,
Lightness and Saturation commands respectively. Each of these three
will give you the same new command line:

Up Down

The Up command will cause the value being altered to go up
and the Down command will cause it to go down. You should experiment
to find the colors that suit you best.

Suppose that you wanted your colors to progress in an even
spectrum from one color to another. You can accomplish this with the
Stretch sub-command. VOYEUR will ask you for the two indices between
which you want the stretch to be made. This command is especially
useful if you want your picture to sort of "melt" from one level to
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another. Usually, you must have the saturation at 100%, and the
lightness of both beginning and ending indices at 50% for best results.

Saving and Reading Color Maps

Just as it would be a time consuming to redefine the internal
TV Guide each time you ran VOYEUR, it would be a pain to redefine all
your colors. That is the reason behind the idea of the Color Map file. The
commands to read or write this file are very much similar to their TV
Guide counterparts. You can use the sequence Read Color map to read in
a color map and the sequence Write Color map to save a color map of
your own creation. Each sequence will cause VOYEUR to ask you for the
name of a color map file.

The Attach command allows you to specify a color map name to
be added to the next TV guide write without actually reading it in. The
color map name is expanded by VOYEUR so that the directory and device
is added to the name before loading it into the TV guide. Thus, if the TV
guide moves to a different directory, the same Color map file will be
referenced.
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Getting Output

As we said in the Introduction, there are currently two kinds
of permanent output available with VOYEUR. The first is color hardcopy
from a Tektronix T411. B compatible color plotter. The second is
Dicomed film - such as 35mm slides or viewgraphs. The methods for
obtaining each of these are rather simple. But first, let's talk about how
to get VOYEUR to display something on the screen.

Screen Output

To control the refreshing of the screen, VOYEUR uses
something called a Display List. When VOYEUR goes to refresh the
screen, it goes down this Display List one item at a time until it is at
the end of the list. In order to display a Picture, you must first add it to
the Display List, and there are two ways to do this. The first is to put
all the Pictures defined in the internal TV Guide into the list. This is
accomplished with the command sequence Display All (this sequence
should be entered from the top command line). If you don't want to look
at all your pictures, you can put them in one at a time with the sequence
Display Select. (this, again is from the top line) VOYEUR will then ask
you for the name of the Picture to add. You should enter the full name of
the Picture and press RETURN. If you want to remove Pictures from the
Display List, you again have two options. The first is a global removal
with the command sequence Display Reset from the top line. This will
remove all Pictures from the Display List. For a one by one removal, you
should use the sequence Display Unselect. VOYEUR will then ask you for
the name of the Picture to remove from the Display List.

Once you have put all the Pictures you want to see in the
Display List, you can tell VOYEUR to start displaying them with the
command sequence Display Monitor (or you can use the Monitor Function
Key). VOYEUR will then start refreshing the screen and continue to do so
until you either press the Bump button or the Stop Refresh button.

Color Hardcopy

Built into the T4115B is a feature that allows the user to
generate a copy of the current screen. This feature is made available to
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users of VOYEUR. The procedure is quite simple. First, make sure that
the plotter is connected to the T4115B and that it is turned on and on
line. Second, press the Stop Refresh button in the upper left-hand
corner of the keyboard. You should wait a few moments after this to
give VOYEUR time to finish processing the Display List. This way, the
screen will not be changed while you are plotting. Next, press the
Hardcopy key - you should see the little red light in the key go on, this
means that a screen copy is in progress. The Hardcopy button is located
on the right-hand side of the keyboard, near the top. Hardcopy takes
anywhere from five to as much as ten minutes to complete the screen
copy. Afterwards, you can press the Start Refresh button and VOYEUR
will proceed with its processing of the Display List.

Dicomed Output

The Dicomed is a high resolution graphic film recorder that
lets you create 35mm slides, viewgraphs, and 16mm movies. Buift into
VOYEUR is a facility to create files containing Dicomed commands. This
means that you can get a slide of what you see on the screen or make a
movie. Since you can see the movie/slide progress on the screen, you can
know instantly if there are any problems - and fix them.

All the commands that pertain to the creation of Dicomed files
are accessed through the Display Dicomed top line sequence. This
gives you the following command line:

Run Flash None Separate Buffer-size

You use the Run command to tell VOYEUR that you want a
Dicomed frame after every screen refresh while you Monitor. The first
time you enter this command, VOYEUR will ask you for the name of the
file that is to contain the Dicomed information. The second and any
subsequent time you enter this command, VOYEUR will ask you if you
wish to continue writing to the previous file name. If you say no, the
VOYEUR will ask you for a new name. If you say yes, VOYEUR will ask you
if you want to append to that old file or create a new version of that file.

You can use the Flash command to tell VOYEUR that you want a
Dicomed frame each time you press the Dicomed Flash function key. This
is useful for making slides of selected frames. The first time you enter
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this command, VOYEUR will ask YOU for the name of the file that is to
contain the Dicomed slide information. The second and any subsequent
time you enter this command, VOYEUR will ask you if you wish to
continue writing frames to the previous file name. If you say no, VOYEUR
will ask you for a new name. If you say yes, VOYEUR will ask you if you
want to append to that old file or create a new version of that file.

To stop generating Dicomed information and close the Dicomed
file, you use the None command. Further Dicomed frames will not be
made until you use either the Run or Flash command and the contents of
the buffer will be flushed to disk.

Dicomed frames in VOYEUR require a large amount of
information. Writing all this to the disk each time would slow you down
considerably. To help avoid this problem, VOYEUR buffers all its Dicomed
information in mass memory. You can specify the size of this buffer
with the Buffer-size command. Theoretically, you could specify a
Buffer-size of up to 12 megabytes, but this isn't very practical. For
most applications, the default buffer size will be enough.

The final option with Dicomed output is the Separate option.
You use this to tell VOYEUR to separate the colors and generate three
frames for each screen - one for the Red, one for Green and one for Btue.
You shouldn't need to use this option very often.
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MACROS

Macros are used to redefine the meanings of keys. A string, special
VOYEUR commands, even other macros can be assigned to any key, so that
when the operator touches the defined key, the assigned string is used
instead.

Defining a Macro

The following command sequence permits you to define macros:

Macro Define

After entering this command the key to assign the macro to will be
requested. The key values are listed in the next section. Note that all
terminals with a lower number than 4120 cannot assign key values -2 to -
178. Defining a key value of -1 undefines all macros, so that is probably
not useful either. 4115 terminals will give an error if a negative value is
used.

After the key number is entered, a request for the string to assign to
the key is made. You generate this string from a combination of special
macro symbols and characters representing VOYEUR commands. Hitting
RETURN terminates the string.

The special commands are used in VOYEUR to direct it to perform
actions not normally available from the command string. All of these
symbols can be upper or lower case. They are:

Normal Display Commands

single backslash
\n terminate a command string request
\b bump up one level in the command tree
\s suppress command display and echoing
\q turn on command display and echoing
\t bump to top of entire command tree

43



VOYEUR Rev 2.0

Monitor Mode Commands

\1 exit monitor mode
\2 Dicomed flash
\4 stop refresh
\5 start refresh
\6 view color map
\7 remove color map (if being displayed)

The Normal Display commands work during graphics editing sessions
only. The Monitor mode commands work only while the display is being
displayed in monitor mode.

An example and explanation of the use of each backslash command
follows:

1. wtDISPLAY.TVG\n

The wt selects the Write. TV guide command. The DISPLAY.TVG
names the TV guide to write to, and the \n signals the command line
processor that'the end of the line is reached. Notice here that the \n
solves the problem of how to terminate the requests VOYEUR makes inside
a macro, since a RETURN will terminate the macro definition. The upper
case is for emphasis only, and has no other significance.

2. \twtDISPLAY.TVG\n\t

This corrects a problem in macro example #1 above. The flaw in
that macro was that it assumed that anytime a 'W' key was touched, the
Write command would be executed. That is only true from the top level
command line. This example uses a \t special command to insure that
before the 'W' is executed, the top of the tree is found. This makes this
command always work, regardless where in the command tree you are
located (unless actually executing another command). The terminating \t
leaves you at the top of the tree after the command has completed.

3. \s\t wtDISPLAY.TVG\n \q\t
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When executing macro commands, the effect is precisely the same
as if the keys are entered by hand from the keyboard. As a result, the
command line flickers and the help line is displayed for each command.
The \s special command will turn off the display and disable all writes to
the screen. The \q turns it back on, so that further commands can be
entered. Otherwise, the macro here has the same effect as macro example
#2. Notice that there are spaces in the macro definition. In general
(except after commands requiring string input), tabs and spaces have no
effect within macro definitions.

4. \1 \t wtDISPLAY.TVG\n \tDAM

This macro would be used only while the screen is being written in
monitor mode. The \1 bumps out of monitor mode, then the
wtDISPLAY.TVG\n writes a TV guide, then the DAM commands restart the
monitor.

Creating a Macro File

Macro files are disk files which contain macro definitions. They are
executed in one of two ways, either with the Macro Read command, or by
including a MACRO statement in the TV guide (done automatically when
writing a TV guide after reading a macro file). Macro files are generally
used to assign macros to keys, and to execute a predetermined script of
VOYEUR commands automatically when VOYEUR is started, although they
can be used to execute any number of VOYEUR commands directly. Macro
files can be nested, that is, they can contain other Macro files, up to 16
levels deep.

Macro files are commented by including comment text between /*
and "/ markers. Text between these two character string is ignored
(comments cannot be nested). Similarly, spaces, tabs, and carriage
returns are ignored (except inside quoted strings, and inside arguments
which are themselves strings). Uncommented macro files are obtuse and
indecipherable Please comment them.

All characters enclosed in double quotes (") in a macro file are
transmitted exactly. This includes comments, spaces, tabs, and carriage
returns. This is useful when assigning macro strings to keys, since
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special commands in macro assignment strings conflict with the same
commands in the file.

Macro files contain backslash command sequences which have the
same effect as within a macro, except that the effect is immediate,
rather than being delayed until a key is touched. The following commands
have the same effect in a macro file as inside a macro definition:

\n end of string for commands
\b bump to next higher level
\t bump to top of tree
\s suppress command display
\n turn on command display

After a macro file is built, to include it in the TV guide just read it
in or attach it to the TV Guide using the Macro Attach command, then
write the new TV guide. The macro file will automatically be executed
whenever the TV guide is read.

The following program defines two keys. The Control Q key will
terminate Voyeur whenever it is used, and the Control X key will write the
TV guide file to DISPLAY.TVG and then exit.

I*

* Example Macro command file
*/

/,

* First, suppress all display, so that the screen will not flicker
* while the macros are being defined. Also go to the top of the
* command tree.

/s/t

/*

* Now define control Q as a macro. From the table go down the left
* hand side and find Q. Then go across horizontally until the
* column marked CTRL is found. The value is 17. This is the key
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* value. Note that the assignment string is quoted, since the

* special commands inside the assignment string are supposed to
* be executed only when the Control 0 key is touched.
*/

\t MR 17\n "\s\t Q"\n

/*

* Next, define the Control X key.
*/

\t MR 24\n "\s\t WTdisplay.tvg\n \t Q" \n
/*
* Finally, turn on command display and get to the top of the

* command tree.
*/

\q\t

Caution

Macros are a very powerful and hence potentially destructive
tool. You should use them carefully. One important thing to remember is
to make frequent use of the \T' to insure that you know from what level
in the command tree VOYEUR starts. 'E' at one level could have a
different effect from 'E' at another!
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Un Caps Shifted Ctri Ctd Unte Caps Shifteo Otri Ctd
Key Shifted Lock Shift Key Shifte Lock Shi

91 91 123 27 27 U 117 85 85 21 21

I 105 73 73 9 9
49 49 33 49 33 0 111 79 79 15 15

1 P 112 80 80 16 16

@ 50 50 64 50 0 92 92 96 28 0
2 0

# 51 51 35 51 35 BACK 8 8 -40 -41 -42

3 SPACE
$ 52 52 36 52 36 LINE 10 10 -43 -44 -45

4 FEED
% 53 53 37 53 37 TAB 9 9 -46 -47 .48

5 A 97 65 65 1 1
A 54 54 94 54 30 S 115 83 83 19 19

6 D 100 68 68 4 4
& 55 55 38 55 38 F 102 70 70 6 6

7 G 103 71 71 7 7
" 56 56 42 56 42 H 104 72 72 8 8

8 J 106 74 74 10 10

( 57 57 40 57 40 K 107 75 75 11 11

9 L 108 76 76 12 12
48 48 41 48 41 : 59 59 58 59 58

0

45 45 95 45 31 39 39 34 39 34

+ 61 61 43 61 43 RET 13 13 -49 -50 -51

-- Z 122 90 90 26 26

93 93 125 29 29 X 120 88 88 24 24

C 99 67 67 3 3
RUB 127 127 -34 -35 .36 V 118 86 86 22 22

OUT B 98 66 66 2 2

ESC 27 27 -37 -38 -39 N 110 78 78 14 14

124 124 126 28 30 M 109 77 77 13 13

< 44 44 60 44 60

Q 113 81 81 17 17

W 119 87 87 23 23 > 46 46 62 46 62

E 101 69 69 5 5

R 114 82 82 18 18 ? 47 47 63 47 63

T 116 84 84 20 20 I

Y 121 189 89 25 25 48 SPACE32 32 -52 _-3
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Key Un Caps Shifted Ctrl Ctrl
Shifted Lock Shift

Fl 128 128 136 -2 -10

F2 129 129 137 -3 -11

F3 130 130 138 -4 -12

F4 131 131 139 -5 -13

F5 132 132 140 -6 -14

F6 133 133 141 .7 -15

F7 134 134 142 -8 -16

F8 135 135 143 -9 -17

DIALOG -111 -111 -117 -123 -129

SETUP -112 -112 -118 -124 -130

LOCAL -113 -113 -119 -125 -131

COPY -114 -114 -120 -126 -132

PAGE -115 -115 -121 -127 -133

BREAK -116 -116 -122 -128 -134

ZOOM -18 -18 -22 -26 -30

PAN -19 -19 -23 -27 -31

NEXT -20 -20 .24 -28 -32

VIEW

VIEW -21 -21 -25 -29 -33
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VOYEUR QUICK REFERENCE

The VOYEUR system employs a menu-driven system of
commands. These commands are organized what can be thought of as a
tree (see the Command Card for a pictorial view). This section gives a
brief description of each of the commands in VOYEUR and is intended to
be used by those who are more familiar with VOYEUR. If you are just
starting with VOYEUR, you should consider reading the tutorial first.
This section uses the convention that the further indented a command is,
the further down the tree it is.

Display - Alter the contents of the display list

Select - Select a picture to add to the display list
All - Select all pictures for display
Unselect - Remove a picture from the display list
Reset - Empty the display list
Dicomed - Alter the settings for Dicomed Slide generation

Run - Enable a new Dicomed frame after every display refresh
Flash - Write a Dicomed frame when the DICOMED FLASH key is pressed
None- Disable all Dicomed frames and close any current file
Separate - Separate or combine the Red Green and Blue
B uffer-Size - Change the size of the mass memory buffers used for Dicomed

Monitor - Start the VOYEUR monitor

Edit - Edit the internal TV-Guide structure

Copy - Copy a JOB, PICTURE, or DETAIL
Job - Copy a JOB structure
Picture - Copy a PICTURE structure
Detail - Copy a DETAIL structure

Modify -Modify the current internal TV-Guide
Job - Modify a JOB specification
Picture - Modify internal PICTURE specification

See commands under the Generate section
Detail - Modify internal DETAIL specification

See commands under the Generate section
Set-re-draw - Set one or more RE-DRAW flags
Clear-re-draw - Clear one or more RE-DRAW flags
Index - Modify the index for all detail loaded
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Generate - Generate a new component for the internal TV-Guide
Job - Generate a new JOB structure
Pixels - Generate a new PIXELS picture specification

Name Modify mass memory file name where PIXEL data is located
Offset Modify offset from beginning of PIXEL data file
Location Modify PIXEL picture location
Width Modify PIXEL picture width
Height Modify PIXEL picture height
File-size Modify PIXEL file size
Pixel - Modify pixel dimensions or axis

Width Modify pixel width
Height Modify pixel height

Axis - Modify pixel major axis
Mode - Modify pixel ALU writing mode
Type Modify pixel write type

Refresh - Modify the picture refresh parameters
Continuous - Refresh picture continuously
Time - Refresh picture after specified time delay
Synchronize - Refresh picture on a mass memory flag
Lockstep - Refresh picture, synchronizing with a STEP value
Value - Refresh picture based on a specific value in memory

Graph - Generate a new GRAPH picture specification
Name - Modify mass memory file name where GRAPH data is located
Offset - Modify offset from beginning of file of GRAPH data
Location - Modify GRAPH picture location
File-size - Modify GRAPH file size
Refresh - Modify refresh parameters

Continuous - Refresh picture continuously
Time - Refresh picture after specified time delay
Synchronize - Refresh picture on a mass memory flag
Lockstep - Refresh picture, synchronizing with a STEP value
Value - Refresh picture based on a specific value in memory

Size Modify picture size
Window - Modify window parameters

Border - Change border index or visibility
Index - Change the border index
Visibility - Change the border visibility

Wipe - Change the wipe index
Origin - Change the window origin
Extent - Change the window extent

Segment - Generate a new SEGMENT picture specification
Namne - Modify mass memory file name where SEGMENT data is located
Offset - Modify offset from beginning of file of SEGMENT data
Location - Modify SEGMENT picture location
File-size - Modify SEGMENT file size
Refresh . Modify refresh parameters

Continuous - Refresh picture continuously
Renew - Renew viewpoint before each display
Time - Refresh picture after specified time delay
Synchronize - Refresh picture on a mass memory flag
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Lockstep - Refresh picture, synchronizing with a STEP value

Value Refresh picture based on a specific value in memory
Size - Modify picture size
Window Modify window parameters

Border Change border index or visibility
Index - Change the border index
Visibility - Change the border visibility

Wipe - Change the wipe index
Origin - Change the window origin
Extent - Change the window extent

Vector - Generate a new VECTOR picture specification
Name - Modify mass memory file name where VECTOR data is located
Offset - Modify offset from beginning of file of VECTORdata
Location - Modify VECTOR picture location
File-size - Modify VECTOR file size
Refresh Modify refresh parameters

Continuous - Refresh picture continuously
Renew - Renew viewport before each display
Time - Refresh picture after specified time delay
Synchronize - Refresh picture on a mass memory flag
Lockstep - Refresh picture, synchronizing with a STEP value
Value - Refresh picture based on a specific value in memory

Size - Modify picture size
Window - Modify window parameters

Border - Change border index or visibility
Index - Change the border index
Visibility - Change the border visibility

Wipe - Change the wipe index
Origin - Change the window origin
Extent - Change the window extent

Axis - Generate a new AXIS detail structure
Label - Modify parameters associated with attached label strings

Format - Change text and format of label string
Char size - Change size of the label string
Distance - Change distance of labels from the Axis
Rotation - Change label rotation
Slant - Change label slant
Index Change the color of the label
Values Change the values of the end points

Marks - Modify parameters associated with the tick marks
Count - Modify the number of tick marks used
Lengih - Modify the length of the tick marks
Per-value - Modify the number of tick marks per value

A xis-xy-loc - Modify AXIS location
Style - Modify the line style used to draw the AXIS
Rotation Change overall rotation of the entire AXIS
Index - Modify index used for lines in AXIS
Kind - Modify the kind of AXIS used
Total-length - Modify the total length of AXIS

Label - Generate a new LABEL detail specification
Character-size - Modify the size of text characters
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Location Modify the LABEL location
Slant Modify the LABEL slant
Rotation Modify the LABEL rotation
Index Modify the LABEL index
Bold Modify the number of times the string is written
Text Modify the text associated with the LABEL

Data - Generate a new DATA detail specification
Character-size - Modify the size of text characters
Location Modify the DATA location
Slant - Modify the DATA slant
Rotation - Modify the DATA rotation
Index - Modify the DATA index
Text - Modify the text associated with the DATA
Bold Modify the number of times the string is written
Offset Modify the file offset for the data variable
Write Write a new value into mass memory at the designated offset

Border - Generate a new BORDER detail specification
Index Modify the index used for the BORDER
Style - Modify the line style used for the BORDER
Disable Disable BORDER

Top - Disable drawing BORDER on top
Bottom - Disable drawing BORDER on bottom
Right - Disable drawing BORDER on right
Left - Disable drawing BORDER on left

Enable - Enable BORDER
Top - Enable drawing BORDER on top
Bottom - Enable drawing BORDER on bottom
Right - Enable drawing BORDER on right
Left - Enable drawing BORDER on left

Remove - Remove a JOB, PICTURE, or DETAIL from the internal TV-Guide
All - Clear the entire TV-Guide from memory
Job - Remove a JOB from the internal TV-Guide
Picture - Remove a PICTURE from the internal TV-Guide
Detail - Remove a DETAIL from the internal TV-Guide

Defaults Change the defaults associated with various things
Picture - Change the picture fill index
Aperture - Change the pick aperture
Line - Change the default line index

Bold - Change the default bold for DETAILS
Dialog - Change one or more of the dialog area indexes

Alternate - Change alternate index (for commands)
Background - Change the dialog background index
Character - Change the character index used for help line

Color - Modify the internal color map

Attach - Attach a Color map name to the TV Guide
Default - Load the default color map
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Modify - Modify the internal !or map
Hue - Alter the Hue

Up Increase the Hue
Down Decrease the Hue

Lightness Alter the Lightness
Up Increase the Lightness
Down Decrease the Lightness

Saturation Alter the Saturation
Up - Increase the Saturation
Down Decrease the Saturation

Stretch - Stretch and even spectrum between two colors

Read - Read a VOYEUR file

Color-Map - Read a new color map
TV Guide - Read a new TV-Guide

Write - Write a VOYEUR file

Color-Map - Write the current color map
TV Guide - Write the current TV-Guide

Select - Select a new JOB or PICTURE to be worked on

Job Select a new JOB to work on
Picture - Select a new PICTURE to work on

Open - Reopen all mass memory files

Macro - Manipulate VOYEUR macros
Define - Define a macro
Read - Read a macro file

Quit - Exit VOYEUR

Vax-DCL - Spawn a VAX DCL sub process (press LO to return)
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DIRECT NUMERICAL SIMULATION OF

AXISYMMETRIC JETS

F.F.Grinstein,*, E.S.Oran,t and J.P.Boris,t
Laboratory for Computational Physics

Naval Research Laboratory
W, shingtun, D.C. 20375

Abstract which represent the more realistic situations occurring in the
laboratory.

We present results from numerical simulations of the
evolution of the Kelvin-Helmholtz instability for an un- In previous work we have performed finite-difference,
forced, subsonic, compressible, axisymmetric, spatially- compressible, spatially-developing simulations of planar

evolving shear layer. In addition, we study the effect of shear flows, with the objective of investigating asymme-

small, random pressure fluctuations at the nozzle orifice on tries in mixing [61 and the basic mechanisms involved in

the growth of the mixing layer. These fluctuations model in- the reinitiation of the instabilities {71. Here we describe

flow perturbations in experimental flows arising from turbu- finite-difference calculations of the evolution of the Kelvin-

lence and boundary layers in the nozzle. The finite-difference Helmholtz instability for a spatially-evolving compressible

numerical model used to perform the simulations solves the axisymmetric jet emerging into a quiescent background. The

two-dimensional time-dependent conservation equations for instabilities sustain themselves through a feedback mecha-

an ideal fluid using the Flux-Corrected Transport algorithm nism in the flow. The evolution and merging of the down-

and timestep-splitting techniques. No subgrid turbulence stream structures affect the inflowing material upstream,
model has been included. In the absence of perturbations, thus triggering the growth and shedding of new vortices [7].

the calculations indicate that the large scale development In addition, we study the effect of small, random pressure

of the unforced jet shear layer has an underlying degree of fluctuations at the nozzle orifice on the growth of the mix-

organization. This is the result of a feedback mechanism in ing layer. These fluctuations model inflow perturbations in

which the shear layer ahead of the nozzle edge is modulated experimental flows arising from turbulence and boundary

by the far field induced by the mergings downstream, near layers in the nozzle.

the end of the potential core of the jet. The studies with
random high frequency perturbations on the inflow veloc- The Numerical Model
ity show that they effectively tend to break the temporal
correlations between the structures. The numerical model used to perform the simula-

tions solves the two-dimensional time-dependent conserva-
Introduction tion equations for mass, momentum and energy for an ideal

gas
Experimental investigations in the last decade have ap V .PV, (1)

shown that large spanwise coherent structures dominate the Vt
entrainment and mixing processes in shear layers 111. Re- (PV) =
cently, it has become possible to study these structures by di- at V -PVV - VP, (2)

rect numerical simulation of their large scale features. These
simulations are an important alternative and supplementary ae (3)- = -V. eV-V. Pv, 3
tool in the basic research of the properties of fluid flow tran- at
sitioning to turbulence. Since a simulation can calculate where i = P/("y - 1) + (1/2)pV 2 , is the internal energy, and
values for all the primary flow field properties as a function V, P, p, and % are the velocity, pressure, mass density,
of time, statistical information can be obtained about the and the ratio of specific heats. The equations are solved us-
system through spatial and temporal averages. In addition, ing the Flux-Corrected Transport (FCT) algorithm [8] and
parameters of the flow can be easily varied. While the ex- timestep-splitting techniques. FCT is an explicit, fourth-
perimental conditions may not be fully controllable in the order, finite-difference algorithm, which ensures that all con-
laboratory, the simulation conditions are. served quantities remain monotonic and positive. FCT mod-

Numerical studies of coherent structures have used - ifies the linear properties of a high order algorithm by adding

tral (2, vortex dynamics [3), and finite-difference [4-6) tech- diffusion during convective transport to prevent dispersive

niques. Numerical studies of the evolution of flows similar ripples from arising. The added diffusion is subtracted out

to those seen in the laboratory experiments have considered appropriately where not needed in an anti-diffusion phase of

both two-dimensional planar and axisymmetric shear layers. the integration cycle to maintain high order accuracy. With

Previous finite-difference calculations have modeled either this approach, no artificial viscosity is required to stabilize

temporally-developing mixing layers 141, where it is assumed the algorithm.

that the relevant vortex dynamics takes place in relatively The model uses inflow and outflow boundary conditions
compact space regions, or spatially developing layers [5-71, which have been developed and tested for these types of mul-

tidimensional FCT calculations [6,91. The conditions ensure

Research Physicist, Berkeley Research Associates Inc., the proper behavior of the fluid near the boundaries. The
Springfield, VA inflow boundary conditions specify the inflow density and

t Senior Scientist, LCP, Member AIAA velocity, and use a zero slope condition on the pressure at
t Chief Scientist, LCP the inflow boundary to define the energy at the guard cells:

This pmop is dmsft4 a work Of the U.S.
,Gvem l mod hIfnfo" is iI the Vuhlk domain.



7.23

Pg = pn..o. (4a)

Vg = (4b) R (cm)

P, = P1, (4c)

where 1, is the pressure at the first (inflow) cell. This al- 0.00
lows pressure differences between the jet and the surround- 0.00 Z (cm) 24.60
ing fluid to generate transverse flows. In addition, a short
inflow plenum is modelled by including a portion of the noz- Fig. 1: Schematic diagram of the 220 x 120 computa-
zle within the computational domain. The outflow boundary tional grid.
conditions define the density and velocity at the guard cells
by means of extrapolations from the last two cells: jet was subsonic, with Mach number 0.57, and correspond-

ing velocity 2.0 x 104 cm/s. Figure 2 is a schematic diagram
Pi = Pn (5a) of the flow configuration. The perturbation, which initiated

us = 2v. - V,-i. (5b) the instabilities and occurred only at the very beginning of
the calculation, is a very small cross-stream pressure gra-

The guard cell pressure, in turn, is defined by interpolating dient generating vorticity at the shear layer just ahead of
between the boundary pressure value and ambient pressure the nozzle edge. This disturbance moves downstream as the
(assumed at infinite distance from the trailing edge of the integration proceeds, generating the transverse flows which
nozzle): trigger the Kelvin- Helmholtz instability. Previously, initial

Ps = Pn + (Y, - Y.) - PR), (5c) sinusoidal perturbations along the shear interface were con-
Py =,J M.6 -y,) sidered [9]. The current approach to initiating the instability

where Y is either the radial or axial coordinate, and the sub- was used in the simulation of planar shear flows 16,71, and is
script j refers to the trailing edge of the nozzle. In this way, closely analogous to using a delta function perturbation at
the outflow boundary conditions impose a slow relaxation the center in an idealized periodic simulation involving two
of the pressure towards the known ambient value. These equal and opposite streams.
boundary conditions allow feedback to occur between the
downstream vortices and the inflowing material. This phys- Outflow
ically realistic approach avoids the need to constantly drive 7.23'
the instability, allowing for it to evolve naturally in the calcu-
lation. No subgrid turbulence model has been included. The l (cm) l
simulations are expected to be adequate in describing large Om + N2
scale features of gas phase flow for large Reynolds numbers. R.90

The computational grid was set up initially and held 1H2 + N2
fixed in time. The timesteps were chosen to satisfy the 0.00
Courant condition. The basic finite-difference grid used 120 0.00 1.67 Z (cm) 24.60
cells in the cross-stream (radial) direction and 220 in the
streamwise (axial) direction, with the mesh spacings vary- Fig. 2: Flow configuration for the azisymmetric jet
ing in the ranges 0.05 < AZ 5 0.52 cm and 0.02 < AR < simulation. The 'z' indicate, the location of the trailing edge
0.067 cm. Figure I shows a schematic diagram of the grid. of the nozzle.
The cells are closely spaced in the radial (R) direction across
the shear layer, where the large structures form, and they Typical features of the flow at the early stages are shown
become farther apart as the distance from the shear layer in- in the sequence of isovorticity contours in Fig. 3. Vortex
creases for R > R.. The cell separations in the streamwise rings develop because of the non-linear growth of the insta-
direction (Z) also increase in size as we move downstream bility. This occurs at an essentially fixed distance from the
and upstream from the trailing edge of the nozzle, located at nozzle edge, somewhat less than one diameter D = 2R., at
R = R. = 0.9 cm, Z = Z. sts 1.67 cm. This takes advantage z = (Z - Z.)/D %s 0.4. The newly formed structures move
of the fact that the structures merge and grow downstream, along the interface, interact with each other and thereby
so that fewer cells are necessary to keep the same relative spread the vorticity until the center, potential core region
resolution as obtained near the nozzle. Convergence of the disappears, at approximately z = 3. The structures are dis-
results was verified by checking their consistency with results placed vertically by a low-frequency modulation of the shear
obtained on grids with 440 x 120 and 220 x 240 computa- layer. When appropriately phased with the structures, the
tional cells, which doubled the resolution in the axial and modulation tends to favor the merging of three structures
radial directions, respectively, relative to the 220 x 120 grid. in half of the modulation cycle, where they will coalesce

into larger structures. Since the jet is unforced, the low-
The Unforced Axisvmmetric Jet frequency modulation can only be due to the pressure field

The system studied is a high speed jet containing a mix- induced by the larger structures downstream, as they pass
ture of molecular hydrogen and nitrogen emerging into a qui- near the end of the potential core of the jet. As the effect of
escent background mixture of molecular oxygen and nitro- the downstream events on the inflowing fluid becomes im-
gen, with a jet to background density ratio of 0.67. The sys- portant, there is an interaction between the basic instability
tem was initialized with a step function axial velocity profile mechanism at the shear layer and the feedback mechanism.
at a ,niform temperature (298 K) and pressure (1 atm). The The flow pattern becomes subsequently different from that
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I at thc initial stages in the flow development, which is dom-
inated by the shear layer instability. A striking feature, on 2.250 ms

the last panel of Fig. 3, is the spatial cohercnce between the .
structures. This is characteristic of the feedback phenom- .1
ena between the downstream events and the inflowing fluid
in jets 1101. The distance between the second and the third ,_"--___ . ...
merging locations increases, relative to the distance between
the second and the first mergings, by a factor of the order of 2.700 ms
2 - 3, in good agreement with the results of jet experiments
with low-level acoustical excitation [121. .

0.810 ns 3.200 m

O.ON.
0.00 -

0.990 nu 1.69o Z (C-) 12.0

,,,, iql :.' " Fig. 4: Regularity and Spatial coherence of the flowdevelopment for the nfarcediet.

. near the nozzle exit, shows peaks located at the frequen-
' :..,. ..- cies St.m 0.100, Set 0.050, St2 ,0.025, St+ ;z 0.125,

ikkm

":and St- ;t 0.075. Here, St. can be associated with the
shear layer instability frequency, in good quantitative agree-

.30 r .170 f ment with the predictions of linear inviscid instability the-
. 0..,eaory [131. In addition, the modulation of the initial shear layer

(cm) with St, ;%; .St..2 5 e St. $t e associated with the

first and second subharmonic, while St* . (St.±St2 ) result
0.0 .from the non-linear interaction between the shear layer in.

. - stability and the feedback process. Moreover, we note that
1.69 Z (cm) i.00 the low frequency peak is located at non-dimensional fre-

quency Sti,t = fD/v. - 0.36. This is within the range
0.2 < Stijt _ 0.5, where the frequency of the preferred

Fig. 8: Initial stages in the flow development, jet mode (characteristic of the largest scales on an unforced
subsonic jet) is known to lie [121. As we move downstream,
the amplitudes for the high frequencies tend to diminish, as

Frames at much later times in the development of the can be expected. In particular, Figs. 5bc indicate locations

flow can be seen in Fig. 4. A noticeable feature of this se- of the beginning and concluding stages, respectively, of a

quence of frames is a regular repeating spatial pattern in the first merging (associated with St1 ). Similarly, Figs. 5d and

evolution of the flow. We have performed a spectral analysis 5e correspond to locations where second (associated with

of the axial (streamwise) velocity fluctuations, based on the St 2 ) and third (associated with Sts A St./8) mergings take

results of the calculations for these later times. In the se- place.
quence of panels in Fig. 5, we show the results of the analysis The detailed flow visualization through the sequence of
at various relevant axial locations on the center of the shear panels in Fig. 6 allows to determine the approximate pair-
layer (R = Ro), and in terms of the normalized (Strouhal) ing locations, as defined by the locations where the vertical
frequency St = 2rf O./v., where P. and v. are the initial alignment of the vortices takes place. In this way the lo-
momentum thickness of the shear layer and the jet velocity, cations of the second and third pairings can be estimated
respectively. The latter thickness was taken to be effectively from panels c) and d), respectively, at Z ; 4.8 cm, and
defined by 0, = AR = 0.02 cm, where AR is the size of a Z o 9.7 cm. The beginning of the first pairing can be also
radial cell in the region of the shear layer (within which the observed in panel d), at Z % 3.3 cm, where the vortices are
step of the initial velocity profile is defined), seen in the process of rolling around each other. There is
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a close agreement between these merging locations obtained
by direct flow visualization, and the results of the spectral
analysis above. Note, in particular, that the third merging

. . actually occurs downstream of the end of the potential core
2 of the jet. Because of this, the effect of this merging on

St. the shear layer just ahead of the trailing edge of the noz-
l a zle is negligible, as indicated by the spectral distribution in

St, sFig. 5a. This is evidence of the role of the jet diameter, andSt. hence of the location of the end of the potential core, in the

St_ selection of the dominant low frequency mode of the jet.

-~3.60m

H -2
" .... . .... 

rI I I I II I

3.65 m

.

C 4 ...A 1
I 3.74 ma

4 t

4d 1.9Z (mj 12.00

Fig. 6: Flow visualization showing detailed vortex
merging*.

....... ._Effect of Random Inflow Perturbations

11.00 f. .We have also simulated the effects of high frequency ran-

dom perturbations in the inflowing jet stream. Such fluctu-
ations are typically present in the experimental conditions
in the laboratory, and are due to turbulence and bound-
ary layers in the nozzle. In the calculations this is done by

(x 106) jreplacing the streamwise velocity U at the inflow (i.e., for
Z = 0.0 cm, R < R.) with U (1+ p), where p = p(R, t) is the
perturbating term. This term is defined by a sine Fourier
series in the variable R, with R. the largest wavelength:

0.00 V -. M ()8 r&( +s(6
0.00 St 0.90 p(R,t) =- 1-

Fig. 5: Spectral amplitude at R = D/2, and vari- ,=R(

ous axial locations, as a function of Strouhal frequency St. where br(t) is a time-dependent amplitude defined by
a) Z = 2.39 em (s = 0.40); b) Z = 2.94 cr (, = 0.71);
c) Z = 3.54 cm (z = 1.04); d) Z = 5.24 erm (x = L98); 2(t - to.) (tm + it,,)
e) Z = 9.44 cm (z = 4.32). 6,(t) = , if tom < t < 2

2( t,.n - + 2, if (t" + St < t < t,,,_ - 6t_,,
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and by begins to look like the distributions obtained in the analysis

6,,(t) = 0, of near field pressure fluctuations in experiments with non-
excited-jets 1121. The experimentally obtained distributions

otherwise. In this way, each added perturbation term varies consist of a broad peak tilted towards the low frequency side,

between 0.0 and a maximum value of no more than a fraction and centered on Stit -- 0.37, in agreement with the value

p*_/m of the inflow jet velocity. The duration 6t_,, and of St,,, found in the present numerical simulations.

maximum value p* of the amplitude, as well as the intrinsic
phases 0,,(0 < 40,, < 27r) of the terms in the Fourier series Summary and Conclusions

are randomly generated numbers. We have presented results from numerical simulations of

A calculation was performed which restarted the pro- the evolution of the Kelvin-IHelmholtz instability for a sub-

gram at time t = 2.52 ms of the previous unperturbed calcu- sonic, compressible, axisymmetric, spatially-evolving shear

lation, but now including inflow fluctuations. Here, the se- layer. In the absence of boundary layers and small-scale in-

ries in eq. (6) was truncated to its first four terms (M=4), in- flow turbulence, the calculations indicate that the large-scale

cluding only fluctuations of wavelength R, R./2, R,/3, and development of the unforced jet shear layer has an underly-

14/4, with durations 6,,, in the range of 5 - 12.5 ;s (20 -50 ing degree of organization. This is the result of a feedback

time steps). Due to the changes in the frequency content mechanism in which the shear layer ahead of the nozzle edge

of the velocity field, the previous regularity in the flow pat- is modulated by the far field induced by the mergings down-

tern was lost in spite of the relatively small amplitude of the stream, near the end of the potential core of the jet. This is

fluctuations. This can be seen by comparison of the spec- in agreement with the experimental observations 112).

tral distributions obtained in this case with those for the The dominant frequencies in the unforced flow depend
unperturbed case discussed above. We compare Figs. -1a-c, on the two length-scales of the jet, namely, the initial shear
for mean perturbation levels of 0.1, 1 and 5 %, respectively, layer thickness and the jet diameter. These scales are as-
with Fig. 5a. This indicates that the peaks become broader, sociated with the two basic mechanisms in the jet, the jet
while new high frequency peaks are now present. As the fluc- shear layer instability and the jet column instability, which
tuation level increases, the calculated spectral distribution determine the high and low frequency natural modes of the

jet, respectively. The spectral analysis of the axial velocity
- fluctuations at the center of the shear layer, just ahead of

a the nozzle edge, shows a sequence of psaks separated by a
rregular interval approximately equal to St./4. These peaks

I- - correspond to the subharmonics of the jet shear layer insta--bility frequency St. and to the non-linear interactions be-
tween them. The non-dimensional frequency of the preferred
jet mode, Stit = (f./4)D/vo s 0.36, is in good agreementKwith the experimental values for subsonic jets. Moreover,
the value for St. was consistent with the predictions of lin-

................ ____-_'____-/ ___ ear inviscid instability theory. In addition, the distribution
of the merging locations was in qualitative agreement with
that observed in jet-experiments with low-level forcing.

The studies with random high frequency perturbations
on the inflow velocity show that such perturbations tend to
break the organized jet shear layer, and hence the tempo-
ral coherence between the structures. By generating more
incoherent mergings the fluctuations tend to destroy the reg-
ularity of the idealized, unforced two-dimensional case.
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Abstract

Numerical simulations of transverse jets into supersonic flows are conducted by solving the

conservation equations of mass, momentum, energy, and species densities using a fourth order

flux-corrected transport algorithm. These simulations show that the mixing between the jet and

the main flow depends strongly on the shocks and expansion waves induced by the transverse

jet. Therefore, a systematic study of the influence of these pressure waves on mixing is also

being performed. Preliminary results highlight the role of expansion waves in the enhancement

of mixing.

I. Introduction

Mixing and subsequent combustion between fuel and oxidizer in supersonic and hypersonic

flows are crucial issues for air-breathing engines working in the high mach number regimes.

However, these issues still remain largely unresolved. Further studies on mixing mechanisms

and combustion in different flow configurations are needed in order to provide the necessary

understanding for developing efficient and safe supersonic and hypersonic engines.

Molecular diffusion is a rather weak process and in general, it is not sufficient to fully mix

the fuel and oxidizer for complete combustion in high speed flows. Therefore, vorticity produc-

tion at the fuel-oxidizer interface and the generation of other time-dependent flow-structures

may play a dominant role in the mixing enhancement by increasing the interface area substan-

tially.

Since the experiments of Brown and Roshko [1], the mixing enhancement by large-scale

flow structures in shear flows has received increased attention. The presence and significance of

these large scale structures in supersonic flows have been the subject of a number of numerical

studies [2-51. Furthermore, there have been efforts to find different methods of creating and

enhancing the large-scale structures. Among the methods, the possibility of using transverse

injection has been studied 16][7). It was qualitatively shown that mixing might be increased by

carefully arranging the positions of several transverse jets. It was also shown that the transverse

( i.e. normal to the main stream) momentum carried by the jet may perturb the mixing layer

and create instability and, subsequently, large-scale vortical structures. However, more study is
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needed to provide detailed information and understanding of the penetration of transverse jets

into the supersonic main flow and their mixing with the main stream. In this paper, numerical

simulations of transverse jets of different injection pressure will be presented. These numerical

computations provide important information on the penetration of the jet and the impact of

shocks and expansion waves created by the transverse jet on the mixing process.

II. Physical Assumptions and Numerical Method

The following physical assumptions are made in this numerical study: (1) The flow is two

dimensional. (2) All diffusive transport processes are neglected. (3) The flow consists of ideal

gas of constant ratio of specific heat (k=1.4).

The conservation equations of mass, momentum, energy, and species densities are solved

using a fourth order flux-corrected transport algorithm(8]. The flux-corrected transport algo-

rithm is a monotonic, conservative, positivity- preserving algorithm. In this algorithm, accu-

racy, robustness, and stability are achieved by introducing a diffusive flux and later correcting

the calculated results by an antidiffusive flux with the flux limiter assuring the positivity and

monotonicity.

III. Numerical Simulations of transverse Jets

Numerical simulation of a transverse jet of different pressures into the supersonic main flow

are conducted in a 30cm x Scm computational domain. The left and right boundaries of this

computational domain are open. The top and bottom boundaries represent solid walls. These

computations provide information on the overall development of the jet and its mixing with the

main stream. The main stream inlet pressure is 101.3kPa, density is 0.5883kg/m 3 , velocity in

the x-direction is 2455 m/sec, and mach number is 5.0. A sonic transverse jet is injected from

the bottom boundary. The jet is located between 4 and 5cm from the inlet. Two pessures are

used: 202.6kPa (twice of the inlet pressure) and 1519kPa (fifteen times of the inlet pressure).

The jet densities are also two and fifteen times of the inlet values, respectively. The density,

pressure, air-fraction, and x-velocity fields from the calculated results are shown in Figs. 1 and

2. In these figures, a curved shock generated by the jet is also shown. The strength of the
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shock depends on the injection pressure and other jet properties. The upper part of this curved

shock is similar to an oblique shock which is reflected back to the central field by the top wall

and later, intersects the interface between the jet flow and the main flow. The upper part of

the flow field turns upward after he initial-curved shock and then, readjusts to the direction

parallel to the upper wall after the reflected oblique shock. The lower part of the shock is

similar to a normal shock and therefore, the pressure near the jet (after the shock) is close

to the pressure after the normal shock at the inlet mach number and much higher than the

downstream pressure in the two calculated cases. Therefore, a set of expansion waves emerges

to allow the pressure after the jet to gradually reduce to the downstream pressure. Since the

lower part of the flow field after the shock is subsonic, the flow almost turns 90 degrees to the

jet direction and then, turns back to the direction parallel to the bottom wall through the set

of expansion waves.

It is apparent from Figs. 1 and 2, that the initial penetration of the jet depends strongly

on the injection pressure. However the final mixing is dominated by the large scale structures

generated in the flow field although there exists a large difference in the penetration depth

caused by the significantly different jet-pressures. In both cases, instability of the interface

develops in the expansion revon after the initial shock. In Fig. 1, since the initial shock

is relatively weak, the reflected shock does not intersect the interface in the computational

domain and the instability develops into rather large-scale -tructures in this long expansion

region. However, in Fig. 2, the instability begins to develop in the expansion region after the

initial shock. Then, the interface is pushed to the bottom wall by the reflected shock and the

instability developed in the expansion region after the initial shock is suppressed by the reflected

shock. After the interface passes through the reflected shock, instability develops again in the

expansion region after this reflected shock.

In order to further study the initial penetration of the jet and the initial development

of the instability, a 5cm x 2.5cm computational domain is employed. The left, right,and top

boundaries are open and the bottom boundary simulates a solid wall. The main flow inlet

conditions are the same as those used in the above calculations in the 30cm x 5cm domain.

The jet properties are also the same except the jet pressures are 1013kPa (ten times the inlet

pressure) and 1519kPa (fifteen times the inlet pressure) and the jet densities are tca and fifteen
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times the inlet values, respectively. The jet is situated between 1 and 2cm from the inlet.

Although the difference in the jet pressures is moderate and flow fields are similar in these two

cases, strong dependency of the initial penetration of the jet on the injection pressure is again

shown in Figs. 3 and 4. The initial development of the interface instability is also observed

in the expansion region after the initial shock. The stronger instability observed in Fig. 4

may be attributed to the stronger density gradient. The results obtained in this 5cm x 2.5cm

domain and the previous 30cm x 5cm domain show a strong velocity gradient in the interface

region between the jet flow and the main stream. Also, the expansion fan after the initial shock

generates strong pressure and density gradients. These gradients are likely to be the key-factors

in the generation of intability and subsequentll, large-scale structures. Furthermore expansion

waves after the initial and reflected shocks seem to play a favorable role in the generation

of instability and large-scale structures which greatly enhance the mixing. In order to fully

understand the roles played by pressure waves in the generation of instability, production of

large-scale structures, and enhancement of mixing between the jet and the main flow, it is

helpful to conduct studies on interaction between mixing layers and shocks or expansion waves

under more controlled conditions.

IV. Numerical Simulation of the Influence of Pressure Waves on Mixing

In supersonic flows, shocks and expansion waves are bisic features of the flow field. As

an interface of two different streams crosses these pressure waves, strong impact is expected on

the structure and mixing character of the interface. It would be desirable to use these waves

to create instability in the interface region and subsequently, the large-scale flow structures.

Unfortunately, the influence of shock and expansion waves, i.e., which type of waves under

what conditions will produce more favorable effects, has not yet been clearly understood. In

[21, Numerical simulations were conducted for supersonic shear layers between two streams of

different pressures. In those simulations, it was observed that large-scale vortices were indeed

generated by reflected shock and expansion waves in some cases of underexpanded and overex-

panded supersonic mixing layers. Similar results were also obtained in other simulations where

small obstacles were used to generate shock and expansion waves[7][9]. Although the overall

impact is visible, because of the complexity of the flow field and co-existence of different fami-
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lies of the original and reflected shock and expansion waves, it is extremely difficult to clearly

determine effects of different type of pressure waves on the generation of large-scale vortices

and enhancement of mixing in those flow configurations. Furthermore, since the supersonic

flows of very high speed were dealt with in those numerical simulations, the significant amount

of momentum normal to the shear layer induced by those inserted bodies may also play an

important role in vortex geaeration.

Although the earlier simulations have shown that large scale structures can be produced

and subsequently, mixing be enhanced by pressure waves, generalization and application of

these results will be very much case dependent unless more fundamental understanding of

shock-interface and expansion-wave-interface interactions are obtained. Therefore, a systematic

study of the interactions of shocks and expansion waves with supersonic mixing layer has been

underta , n.

In or.ie to study interactions between different pressure waves and supersonic mixing layers

and clearly identify the role played by each type of those waves, some simple flow configurations

need to be selocted. The computational domain used in this study is 25cm in the x-direction

and 2.5cm in the y-direction. A hydrogen stream and an air stream enter the left boundary

of the computational domain parallel to each other. The upper, left, and right boundaries are

open and the bottom boundary simulates a solid wall. Three cases are considered: (a) both

streams are parallel to the x-direction, namely, parallel to the solid bottom wall; (b) the two

streams have a pitch angle of 10 degrees counter-clockwise; (c) the pitch angle is 10 degrees

clockwise. These three configurations are shown in schematics at the bottom of Figs. 5-7. The

upper (hydrogen) stream: pressure=101.3kPa, density=0.244kg/m 3, and mach number=1.5;

the bottom (air) flow: pressure=101.3kPa,density=3.53kg/m 3, and mach number=8.

It is shown in Fig. 6 that large scale structures are generated when the mixing layer passes

through a family of expansion waves while no structures are generated in Fig. 5 where no strong

shocks or expansion waves exist. In Fig. 7, the mixing layer passes through an oblique shock

and the shock has no visible effects on the interface immediately after the shock. However,

instability begins to develop further down stream in small scales but no large-scale structures

are observed. In this set of results, the favorable role played by expansion waves on large scale

vortex generation, which was suggested in the previous section, has been further confirmed
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under the flow conditions used in these simulations.

V. Preliminary Conclusions

The penetration depth of a transverse jet into a supersonic flow depends on the injection

pressure. However, the final mixing seems dominated by the large scale structures generated in

the flow field.

The pressure waves (shocks and expansion waves) play an important role in generation

and enhancement of large-scale vortices. The expansion waves apparently have more favorable

effects. However, more numerical, analytical, and experimental studies are required to yield

more definitive and general conclusions. Currently, more detailed numerical experiments axe

being carried out to further understand the role of pressure waves in supersonic mixing layers.
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Figure Captions

Figure 1. Computed Results for a Transverse Jet into a Supersonic Flow in a 30cm x

5cm Domain. The Main Flow: Density=0.5883kg/.. 3s , Pressure=101.3kPa, and Mach Num-

ber=5.0; and the Sonic Transverse Jet: Density=1.177kg/m 3 , Pressure=202.6kPa, and Mach

Number=1.0. The Jet Is Located between 4 and 5cm from the Inlet.

Figure 2. Computed Results for a Transverse Jet into a Supersonic Flow in a 30cm

x 5cm Domain. All flow conditions are the Same as in Fig.1 except for the transverse jet

density=8.824kg/m 3 and pressure= 1519kPa.

Figure 3. Computed Results for a Transverse Jet into a Supersonic Flow in a 5cm x 2.5cm

Domain. The Main Flow conditions are the same in Fig. 1; and the Sonic Transverse Jet:

Density=5.883kg/m 3 , Pressure=1013kPa. The Jet Is Located between 1 and 2cm from the

Inlet.

Figure 4. Computed Results for a Transverse Jet into a Supersonic Flow in a 5cm x 2.5cm

Domain. All Flow Conditions Are the Same as in Fig. 3 except the jet density=8.824kg/m 3

and pressure= 1519kPa.

Figure 5. Computed Results for a Supersonic Mixing Layer in 2.5cm x 25cm Domain.

The Bottom Flow: Density-3.530kg/m 3 , Pressure=101.3kPa, and Mach Number=8. The Up-

per Flow: Density=O.244kg/m , Pressure=101.3kPa, and Mach Number=1.5. The Flows Are

Parallel to the Bottom boundary.

Figure 6. Computed Results for a Supersonic Mixing Layer in 2.5cm x 25cm Domain. The

Flow Conditions Are the Same as in Fig. 5 except the Flows Are 10 Degrees from the Bottom

Boundary.

Figure 7. Computed Results for a Supersonic Mixing Layer in 2.5cm x 25cm Domain. The

Flow Conditions Are the Same as in Fig. 5 except the Flows Are -10 Degrees from the Bottom

Boundary.
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Mixing Enhancement in Supersonic Shear Layers:
Ill. Effect of Convective Mach number

Raafat H. Guirguis

Abstract Model

This paper addresses some of the fundamental We have made the following assumptions in the

questions concerning the definition of a supersonic model:

shear layer and the effect of convective Mach number 1. The two streams are ideal gases with constant

on the mixing and on the structure of the shear layer. specific heats.

The study shows that the convective Mach number 2. All diffusive transport processes are neglected.

indeed describes the intrinsic character of the insta- Thus only inviscid or convective mixing is con-

bility of a shear layer. A supersonic shear layer is sidered.

defined as having a supersonic convective Mach num- 3. The flow is two-dimensional.

ber. Mixing is enhanced when the convective Mach 4. At the inlet, all flow variables are specified and

number is reduced. remain constant with time.

Introduction Definition of a su.ersonic shear layer

With the growing interest in supersonic combus- A basic question that has to be addressed is what

t ithere is ned interest in supersonic shear makes a shear layer supersonic. As will become ob-
tion, The i r one inte 1 n supersonicrnewr vious later in this paper, a supersonic faster stream
layers- 7 . The work done in the 1960's on supersonic is not sufficient to produce a supersonic shear layer,

jets focused on the study of the wake and the noise even if the slower stream is quiscent. In his thesis,
caused by a supersonic jet discharging into a stagnant Papamoschou 4 gave a comprehensive review of the
background. Now we are concerned with mixing in su- concept of convective Mach number. It is the Mach
personic shear layers as a first step in understanding number in a frame of reference convecting with the
combustion at supersonic speeds. large structures or the dominant waves. The con-

Supersonic combustion means burning the fuel cept of a convective Mach number was originally de-
into a supersonic stream of the oxidizer, without de- rived in connection with studies of linear stability of
celerating the flow to subsonic speeds. In the corn- infinitesimally thin vortex sheets. In turbulent finite-
bustor, the high speed of the flow makes it difficult to thickness shear layers, Bogdanoff' and Papaoschou"
mix the fuel and the oxidizer in the very short time used heuristic arguments to derive an expression of
it takes the flow to pass through the combustor. Tra- the convective Mach number in tei ms of the Mach
ditionally, mixing is accomplished by injecting a jet number of the faster stream and the velocity and den-
of fuel into the oxidizer stream. Jets and shear layers sity ratios. Denoting the properties of the faster and
are naturally unstable and usually lead to large scale slower streams by subscripts I and 2, respectively, the
mixing. Unfortunately, at high Mach numbers, jets convective Mach numbers are defined as
and shear layers become more stable, which reduces
the amount of mixing in a given channel length. I = u-

In a previous paper", we used time-dependent a,
two-dimensional numerical simulations to study the
effect of underexpansion and overexpansion on the and
mixing process in confined supersonic shear layers. -t - U2

The results of the simulations indicated that mixing Md, = 7 .
in confined supersonic shear layers is enhanced when a2

the pressures of the two streams are different. We The derivation by Papamoschou assumes that in

also studied the structure of supersonic shear layers a system of coordinates moving with the large struc-

and how it is different from the structure of subsonic tures, there exist stagnation points common to both

shear layers. We showed that large vortex structures streams. The assumption is justified if the interface

are formed. However, these structures are not as co- rolls up because the flow structure has to allow some

herent as those structures observed in subsonic shear periodicity in the streamwise direction. Whether su-

layers. We also showed that pressure plumes, result- personic shear layers roll up or not, and how essential

ing from the interaction between the flow and the is the roll up to the derivation of the expression for

large vortices, tend to inhibit vortex merging. The the convective Mach number is an open question. The

goal of this paper is to resolve some of the fundamen- results described below should increase the degree of

tal questions concerning the definition of a supersonic confidence in the expression of the convective Mach

layer, the sources of noise in numerical simulations of number. Assuming "yl = -y2,

supersonic shear layers, and the effect of convective 1
Mach number on the mixing and on the structure of Me1 = M,2 = M- = M1 1
the shear layer. 1 + rp

Copyright C American Institute of Aeronautics snd
Agfrnnagfiei Inc 10*7 All rihc e



where r,, = Ui/u 2 and r, = V/7p2 '. Experimental
data 1 - 4 of the growth rate of a compressible shear ,= +r
layer when normalized by the growth rate of an in- + r,
compressible shear layer at the same velocity and den-
sity ratios appear to collapse on a single curve if plot- In this case, we can reduce Me, while keeping M,
ted against the convective Mach number. The data constant, by increasing the density ratio r,.
also indicates that the growth rate start decreasing
rapidly near M, = 0.4 - 0.5. Source of noise

Since subsonic shear layers roll up in a coherent
manner, it is natural to ask ourselves if a shear layer, Another question that has to be addressed is
with at least the faster stream coming in at supersonic what triggers the instability in the a numerical sim-

speed, can be made to behave as a subsonic shear ulation of a supersonic shear layer. Mechanical vi-

layer and roll up by changing the flow variables in brations, flow diturbances generated in a compressor,

such a way as to reduce M, below 1. Here, we have bends in a duct, turbulent boundary layers upstream,
two classes of problems: are but few of the many sources of random noise inan experiment. But in a numerical simulation, the
1. Both streams are supersonic velocity, density, and energy at the inlet are speci-

In this case, min M 2 = 1. From the definition fled. The intensity of turbulence at the inlet is zero

of Mach number, r. = Ml/r,. This dependency be- by definition. Even if the initial conditions were not

tween r, and MI imposes a lower bound on M. Since uniform, the disturbances will be swept out of the

M is proportional to MI, the minimum value Mcmi computational domain since the flow at the inlet is

occurs at MI = 1, hence supersonic and sound waves cannot propagate these
disturbances upstream.

- -Roundoff is a source of relatively small errors,
Mem.o = . depending on the accuracy (number of bits per word)

1+ "of the computer used. Truncation is another source
In the table below, is given in terms of r. of errors. However, these errors are not truly ran-
Noticing tathe prelow, dng rate oiv ing ayers * doma and cannot be considered noise. In other words,
Noticing that the spreading rate of mixing layers in- if we start from the same value, the errors commit-

creases with the velocity ratio, it becomes clear that ted are the same. The question to ask then, is not

trying to reduce M, below 0.5, while keeping M 2  1, what is the source of noise, but what makes the flow

requires reducing the velocity ratio below 3, in which patrs t oe of noint what from the flow

case the shear layer is thin, even if it is incompress- parameters at one grid point different from the flow

ible. What we need is to identify a class of cases for parameters at another point. Once different, the er-
whic r, an Mare ndeendnt.rors introduced in each will be different, which creates

which rp and M1 are independent. a disturbance. If the numerical diffusion inherent in

the algorithm used is not excessive to the extent of

r, 10 5 3 2 1 damping the disturbances, and if the flow conditions
are in an unstable regime, these disturbances will be

Me 0.81 0.67 0.5 0.33 0 amplified.

In the spatial shear layers described below, the
transfer of s-momentum from the faster to the slower
stream is what causes the flow parameters at point la

2. Only the faster stream is supersonic in Fig. 1, to become different from the flow param-
eters at point 1b, and different from 1c, etc. On the

Although M 2 < 1 reduces M. further, a subsonic slower stream side, 2a becomes different from 2b, and
stream 2 is unfavored because it allows the sound different from 2c, etc. The transfer of z-momentum is
waves to propagate upstream the disturbances gener- due to numerical diffusion inherent in finite-difference
ated downstream. Allowing any disturbances to prop- algorithms. After the first timestep, us. < us and
agate upstream of the splitter plate changes the char- u2 > u2. Since the s-velocity of the flow at the
acter of the instability because the slower stream will inlet is specified, in the next timestep, the pressure
enter the domain of solution already in an excited at grid point la increases while that at point 2a de-
state. Instead, we elect to impose on the definition creases. The disturbance created at the tip of the
of a supersonic shear layer the condition that distur- splitter plate then convects with the flow and is even-
bances are not allowed to propagate upstream of the tualy amplified if the flow conditions happens to fall
tip of the splitter plate. This definition, excludes the in an unstable regime.
cases 0 < M 2 < 1. M2 = 0 is included, however,
by assuming that a wall confines the stagnant lower Numerical Shadowgraohs
half of the flow at the inlet (left boundary). The wall
should prevent the disturbances created downstream In a previous paper 6 , we introduced an equiva-
from propagating upstream. The main advatage of lent of a shadowgraph which was produced by photo-
U2 = 0 is that it causes r, and M, to become inde- copying the contours of mass fraction for an underex-
pendent, hence panded supersonic shear layer using an out-of-focus



lens. In a shadowgraph of a shear layer, optical vi- sion in the algorithm. This spread is also a measure
sualization ;s possible if the two streams have differ- of the mixing by numerical diffusion that is superii-
ent indices of refraction. Since the largest gradient posed on the large scale convective mixing in the con.
in the index of refraction occurs at the interface, the fined cases. In the early stages of the calculation the
shadowgraph highlights the interface between the two thin vortex sheet spread uniformly in the y direction.
streams. It is difficult to experimentally produce a The first large scale structure to form was usually ob-
purely two-dimensional flow. Optical effects depicted served at a point nearly 2/3 of the way downstream
on a sensitive film are usually the result of integrating of the channel length. In other words, the initial dis-
the change in some optical property along the third turbance that was created at the tip of the splitter
dimension. plate at the start did not form a large structure un-

In a numerical simulation , the composition at til it was convected 2/3 of the length of the channel.
a given point is represented by the mass fraction. If When Ar, > 1 , both streams are moving at super-
the indices of refraction of the two streams are dif- sonic speeds relative to the large structures. Thus,
ferent, the regions where the gradient of the index it was not surprising to observ- system of oblique
of refraction is large are the regions where the gradi- shock waves attached to the hI .tructures 6 .
ent of composition or mass fraction is large, i.e. the In order to investigate the effect of reducing
regions where the contours are concentrated. The the convective Mach number below 1 in the uncon-
contours of mass fraction contains all the informa- fined case in Fig. 2b, I reduced the velocity ra-
tion in a shadowgraph, except that the large gradi- tio and increased the density ratio by changing the
ents have to be highlighted. For that I use a regular temperature ratio (TI = 300K, T2 = 1200K), keep-
Xerox machine and hold the original a few centime- ing the same Mach numbers and pressures, yielding
ters from the document glass. Out-of-focus copying uI/u 2 = 1.809, pu/p2 = 4.0, and Me = 0.731. The
not only highlights the dense regions, but also diffuses resulting mass fraction contours are shown in Fig. 3.
the concentration of the contours, thus enhancing the Due to the decrease in the velocity ratio the shear
resemblence between the resulting interface and that layer remained stable. The instability observed near
depicted in shadowgraghs where high gradients are z = 17 cm is transient. It appeared always near the
diffused in all, including the third, dimension. same location, was swept out of the domain and then

reappeared again, etc.
Results ,nd Discussion In order to reduce M. without reducing Ui/u2,

In the calculations described below we used a I then used a supersonic stream, M - 2, in con-
two-dimensional computational domain 20 cm long tact with a quiscent back ground, u2 - 0, confined
and 2.4 cm high. We used a 200x80 uniformly spaced by a wall at the inlet and assumed a large density
grid, hence 6z = 0.1 cm and 6y = 0.03 cm. The de- ratio, Pi/p2 = 16 (TI = 300K, T2 = 4800K), yield-
tails of the numerical model are given in reference 5. ing M,, = 0.4. The mass fraction contours of Fig. 4,
Figure 2, reproduced from reference 5, compares the illustrate the time evolution of the shear layer. Al-
contours of mass fraction for an underexpanded con- though the faster stream is supersonic, the instability
fined, equal-pressure unconfined, and overexpanded and breakup patterns of the shear layer are closely
confined supersonic shear layers. When the pressures resembling those patterns observed in subsonic shear
of the two streams are different, the high pressure layers. The mixing accomplished within the length of
stream expands through a rarefaction fan centered at the system is also enhanced. During the calculation,
the tip of the splitter plate while the low pressure the disturbance that was created at the tip of the
stream is compressed to the same pressure through splitter plate at the start caused the interface at the
an oblique shock wave also attached to the tip of the tip to start rolling immediately. As time progressed,
splitter plate. The actual flow parameters affecting new vortex structures appeared at the tip while those
the properties of the shear layer are the values ahead structures formed earlier convected downstream and
(downstream) of these waves. The flow parameters grew in size. Downstream, we can still observe a sta-
behind (upstream) the splitter plate are never real- ble shear layer. It remains stable, until the first dis-
ized by the shear layer. turbance created at the tip rteaches it.

In order to isolate the effects of underexpansion The advantages of using the technique described
and overexpansion while keeping all other parameters above to produce a shadowgraph, are illustrated in
fixed, the inlet conditions were selected such that the Figs. 5 and 6. In Fig. 5, we compare between the
actual flow parameters are the same in all three cases: mass fraction contours before and after it was copied
p, = P2 = 2.452 atm, M' = 4.903, M2 = 1.355, out-of-focus. The procedure highlights the interface.
T = 521.6K and T"2 = 636.2K, yielding u1 /u 2 = Large structures I and 2 are diffused and appear as
3.276, pl/p2 = 1.220, and a convective Mach num- a wiggle in the shear layer. Near the splitter plate,
ber Me = 1.618 > 1. Both the underexpanded and the large strctures are too small to be resolved and
the overexpanded shear layers show large scale mix- they appear as wiggles. Downstream, where the large
ing. In the equal-pressure unconfined case (b), the vortices are well resolved, we can make observations
shear layer is much more stable and no large scale of the rollup of the interface and of the coherence of
mixing is observed. The slight spread in the shear the large structures. Figure 6 is a comparison of three
layer is caused by the small residual numerical diffu- shadowranhs. Cawe (al. renrni..r f -n . ..



8, is a shadowgraph of the mixing layer between two are interested in the subject of supersonic combustion
subsonic streams. Case (b) is an equivalent shadow- to a lea-st make available the extended abstract that
graph of a supersonic stream into a quiscent back- was accepted by the reviewers and that was cleared
ground but at a convective Mach number Mc < 1. for publication at the time it was submitted. This
Case (c), the underexpanded case in Fig. 2a, illus- abstract is included as an appendix.
trates the incoherent character of the large structures Based on the above, and to make up for not pre-
that can be observed in supersonic shear layers, i.e. senting the full paper, I decided to add the work in
when M > 1. this paper, which is a new look on the peculiarities

of supersonic shear layers, using some of my old pub-
Conclusions lished results s , and a theoretical investigation of the

effects of convective Mach using the results of 2 old
1. The convective Mach number indeed describes computer runs in order to test the conclusions of the

the intrinsic character of the instability of the theoretical analysis. These 2 computer runs were ini-
shear layer, as predicted by the studies of tiated and were carried out by myself on the GAPS'
Bogdanoffm , Papamoschou', and Papamoechou system of LCP&FD when I was working at NRL, and
and Roshko 2 . although the results of these 2 runs are not published

2. If M, < 1 but at least one stream is super- yet, they were presented by myself at an earlier meet-
sonic, the flow structure (pressure, density) may ing.
look different from the flow structure when the Finally I would like to express my appreciation
convective Mach number is the same but both to Jay P. Boris for making the GAPS system avail-
streams are subsonic. However, the intrinsic able to me when I was part of LCP, and would like
character of the instability (vorticity) should be to give him credit for starting the simulations of sub-
the same. sonic shear layers and flows on wide splitter plates

3. Supersonic shear layer exhibit well defined large which brought my attention the possibility of using
structures, but they are not as coherent as those bluff bodies to enhance the mixing in supersonic shear
structures observed in subsonic shear layers, layers. I would also like to express my appreciation to

4. Mixing is enhanced when the convective Mach Theodore Young for supplying me with the original
number is reduced. fluid dynamics GAPS codes and for taking the time to

5. The transfer of z-momentum in the vicinity of teach me the architecture of multi-processor systems
the tip of the splitter plate from the faster to the in order to modify the codes for my applications. I
slower stream, due to numerical diffusion in the would also like to thank Fernando Grinstein for many
y-direction, is identified as the mechanism which helpful discussions and appologise to him for not pre-
triggers the shear layer instability in numerical senting the full paper in which he is a coauthor.
simulations.
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Fig. 1 Schematic representation of the computational grid in the vicinity of the splitter plate.
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Fig. 2 Comparison of the mixing contours for (a) underexpanded confined, (b) equal-pressure unconfined, and
(c) overexpanded confned supersonic shear layers. The velocity ratio, density ratio,and the convective

Mach number are the same in all three cases: ul/u2 = 3.276, pl/p2 = 1.220, M, = 1.618.
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Fig. 3 Mixing contours for an unconfined shear layer. Both streams are supersonic; M, = 4.903, M2 = 1.355;
UI/U2 = 1.809, P1/P2 = 4.0, Me 0.731.
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Fig. 4 Time evolution of an unconfined shear layer between a supersonic stream and a stagnant back ground;
Mi = 2 , PI/P2 = 16, M, = 0, 4.
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Fig. 5 Producing the equivalent of a shadowgraph by photocopying the contours of mass fraction using an
out-of-focus lens. The procedure highlights the interface.
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(c)

Fig. 6 Comparison of (a) shadowgraph of a mixing layer between two subsonic streams (reproduced from A.
Roshko, AIAA J., 14, 1349, 1976), and (b,c) numerically produced shadowgraphs of shear layers in which
at least one stream is supersonic. The flow parameters are: (b) M, = 2,M 2 = 0, P1/P2 = 16, M = 0, 4;
(c) u,/u 2 = 3.276,PI/P2 = 1.220, M, = 1.618.
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ABSTRACT

Two-dimensional numerical simulations of the Kelvin-Helmholtz instability in com-

pressible, spatially-evolving, unforced, planar shear layers are used to investigate the

reinitiation of unstable vortex roll-up near the trailing edge of the splitter plate. The

calculated flow pattern of coherent structures shows that the process by which the in-

stability is reinitiated, and thus the self-sustaining nature of the vortex roll-ups in the

flow, depends strongly on the events in the nearby flow field. This observation led to a

simplified flow model which gives insight into the process involved in the roll-up reini-

tiation process. The calculations also show that spreading of the mixing layer through

vortex merging depends strongly on the the pressure field induced by the downstream

events. The dynamic fluid motions downstream generate subharmonic perturbations

which induce vortex interactions and subsequent vortex mergings upstream. Spatial

coherence between the first few roll-ups is observed, thus indicating the presence of

an underlying degree of self-organization in the unforced mixing layer. The results are

evidence of important feedback between the fluid accelerations in the vortex mergings

downstream and the unstable vortex roll-ups occuring upstream.

I - INTRODUCTION

The discovery of large, spatially-evolving, spanwise coherent structures in turbu-

lent flows (Brown & Roshko 1974; Winant & Browand 1974) has led to a shift in the

emphasis from the statistical to the deterministic aspects of transitional and turbulent

flows. Shear flows generated by splitter-plate partitions (e.g., Brown & Roshko 1974;

Browand & Weidman 1976; Ho & Huerre 1984) exhibit most of the intricacies associ-

ated with the transition to turbulence and also have are important for many practical

* Berkeley Research Associates, P.O.Box 852, Springfield, VA 22152
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applications. Large scale vortical structures are intrinsic features of the mixing lay-

ers at high enough Reynolds numbers, and their sequential mergings are the primary

mechanism for spreading the layer in the downstream direction (Winant & Browand

1974). Numerical simulations have indicated that the vortex interactions leading to

the pairing process depend in a crucial way on the presence in the shear layer of an ap-

propriately phased subharmonic of the most unstable linear mode (Patnaik et al. 1976;

Riley & Metcalfe 1980). In addition, experiments (Ho & Huang 1982) have shown that

the spreading rate of the mixing layers can be changed considerably by perturbing the

flow at a very low forcing level near a subharmonic. In particular, Ho & Huang (1982)

proposed a feedback mechanism to explain the observed evolution of the structures and

the pattern of streamwise vortex merging locations.

There are three processes that can influence the reinitiation of vortex roll-up in

the shear flow: 1) perturbations in the flow coming from upstream, 2) perturbations in

the flow coming from the splitter plate or nozzle (e.g., due to boundary layers, wakes or

small recirculation zones), and 3) perturbations in the flow coming from downstream.

In laboratory experiments this last mechanism is difficult to study quantitatively be-

cause turbulence in the inflow and boundary layers off the splitter plate or nozzle cannot

be eliminated. In numerical simulations of the spatially-evolving mixing layer, various

algorithms for the inflow and outflow boundary conditions potentially modify or even

mask this downstream feedback. The advantage of numerical simulations with physi-

cally realistic boundary conditions is that inflow perturbations can be eliminated. Then

the downstream feedback remains the only process that can reinitiate the instability.

The idea of a feedback mechanism through which the downstream events influence

the upstream flow was first proposed by Dimotakis & Brown (1976) to explain unusually

long autocorrelation times of the streamwise velocity fluctuations observed in their

planar shear flow experiments. Subsequently, Laufer & Monkewitz (1980) observed

that the unstable shear layer, close to the nozzle of a jet, was modulated with a low

frequency corresponding to the passage frequency of the large scale structures at the

end of the potential core. This suggested the presence of such a feedback mechanism

for flows in a circular jet.

The feedback mechanism discussed by Ho & Huang (1982) was very similar in

principle to that in the inpinging jet problem as studied by Ho & Nosseir (1981), and
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discussed by Laufer (1981) for free and forced jets. They conjectured that the cross-

stream perturbations required for the pairing process may be provided by the pressure

field induced by the downstream (already paired) vortices. The induced field perturbs

the thin shear layer near the trailing edge of the splitter plate or the nozzle. This

generates new Kelvin-Helmoltz waves from which new coherent structures develop and

then subsequently merge. The feedback loop from the trailing edge to the merging

location involves the unstable vortex roll-ups propagating downstream and pressure

waves from these changing, predominantly rotational flows, propagating upstream.

Numerical studies of coherent structures in shear layers have used spectral meth-

ods, vortex dynamics, and finite difference techniques. Many simulations have been

performed to study temporally-evolving shear layers, which are defined by periodic

boundary conditions at the inflow and outflow (e.g., Patnaik et al. 1976; Riley & Met-

calfe 1980). However, simulations of the evolution of spatially-evolving flows similar

to those seen in laboratory experiments require the use of realistic inflow and outflow

boundary conditions. Spatially-evolving two-dimensional shear layers have been simu-

lated using vortex techniques (Ashurst 1979; Aref & Siggia 1980; Mansour & Barr 1985;

Ng & Ghoniem 1985) and finite-difference methods (Davis & Moore 1985; Grinstein et

al. 1985, 1986).

This paper discusses basic physical mechanisms for the reinitiation of vortex roll-up

and feedback phenomena in planar shear flows. We first describe two-dimensional finite-

difference numerical simulations of the evolution of the Kelvin-Helmholtz instability of

a spatially-evolving, unforced planar shear layer. This provides a picture of the large

scale flow dynamics which is examined through isovorticity contours. The calculated

flow patterns show that the reinitiation process depends strongly on the events in the

nearby flow field. This led us to formulate a simplified analytical flow model which

gives insight into the mechanisms involved in the reinitiation process. In addition,

the flow visualization shows the effect of the long range pressure field induced by the

downstream fluid accelerations, which results in spatial coherence between the first few

roll-ups. The results give direct evidence of a feedback mechanism in unforced mixing

layers.
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H - NUMERICAL SIMULATION OF AN UNFORCED MIXING LAYER

A. The Numerical Model

The numerical model solves the time-dependent, inviscid conservation equations

for mass, momentum and energy in two dimensions. It uses the Flux-Corrected Trans-

port (FCT) algorithm (Boris & Book 1976) and timestep-splitting techniques. This is

an explicit, conservative, monotone, fourth-order finite-difference algorithm, with no

artificial viscosity for stabilization. The algorithm is designed to incorporate variable

and moving grids. Inflow and outflow boundary conditions have been developed and

tested for these compressible multidimensional FCT calculations (Boris et al. 1985;

Grinstein et al. 1985). The inflow boundary conditions allow pressure fluctuations

from the downstream vortices to influence the inflowing material. Such a physically

realistic inflow boundary condition avoids the need to constantly drive the instability,

allowing for its natural evolution in the calculation. The pressure values used at the

outflow guard cells are defined by interpolating between the pressure values at the

outflow boundary cells and ambient (background) pressure. This boundary condition

imposes a slow relaxation of the pressure towards the known ambient value. Applica-

tions and tests of the model for the simulation of two-dimensional mixing layers have

been described in our previous studies (Grinstein et al. 1985, 1986). The calculations

are inviscid and no subgrid turbulence model beyond the natural FCT filtering has

been included. The simulations are expected to be adequate for describing large scale

features of high Reynolds number flows.

Figure 1 shows the two-dimensional flow configuration. Two coflowing laminar

streams of air are initially separated by a thin splitter plate and then enter a long

chamber confined between two walls. The values in the Y direction, indicated between

parenthesis in the figure, indicate alternative locations of the walls. This variation in

chamber width was used to evaluate the influence of the separation between the walls

on the phenomena being studied. The trailing edge of the splitter plate is located on

the centerline at approximately X = 2.0 cm, as shown in the figure.

The simulations are initialized by assuming that both gas streams have the same

initial pressure (1 atm) and temperature (298 K), and have different (fast and slow)

free stream velocities V1 and V,. The free stream velocity ratio,

~Vf -V,
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was varied in the range 0.5 - 1.0 and the mean Mach number was in the range 0.17 -

0.40. The flows were subsonic and virtually incompressible. Since the FCT algorithm

used to describe the convection is f ily compressible, sound waves are well resolved.

This means that acoustic delay times for pressure waves are properly included.

The computational grid, discussed in Grinstein et al. (1985), was set up initially

and held fixed in time. Typical finite difference grids used 120 - 240 cells in the cross-

stream direction and 300 - 600 in the streamwise direction. The cells are closely spaced

in the cross-stream direction' (Y) near the shear layer, and they become more widely

spaced as the distance from the shear layer increases. The grid in the streamwise di-

rection (X) was either uniform (600 cells), or increasingly coarser (300 cells) as the

distance downstream from the splitter plate increases. A non-uniform grid takes ad-

vantage of the fact that the expected vortical structures merge and grow so that fewer

cells are necessary to keep the same relative resolution to that obtained near the splitter

plate. The results presented in this paper were obtained on grids of 300 x 120 and 300 x

160 cells, for the smaller and larger computational domains, respectively. The cell sizes

were 0.012 cm < AY < 0.196 cm, and 0.030 cm < AX < 0.231 cm. The computed

results were consistent with those obtained in more resolved calculations with 300 x 240

and 600 x 120 cells. These higher resolution tests were used to check the convergence

of the calculations. The timesteps were chosen to satisfy the Courant condition.

B. Reinitiation of the Unstable Vortex Roll-ups

The initial shear layer is Kelvin-Helmholtz unstable. The small perturbation ini-

tiating the instabilities and subsequent vortex roll-ups occurs at the very beginning of

the calculations. This initiation is analogous to using a delta function perturbation at

the center in a periodic simulation of two equal and opposite streams. The perturba-

tion generates small cross-stream pressure gradients at the shear layer, near the edge

of the splitter plate. These perturbations induce the transverse flows triggering the

instability initially.

For a two-dimensional inviscid, incompressible flow, the transport of vorticity, w,

is described by the Helmholtz equation

dw(
dt

Because the vorticity is fixed to the fluid, the lines of constant vorticity act as fluid

markers much like the dye used in the laboratory experiments. Since the flows consid-
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ered here are inviscid and virtually incompressible, the time evolution of the flow can

be visualized through sequences of isovorticity contours.

Figure 2 shows the initial developaent of the flow for the case in which R = 0.82.

As the instability grows, the vorticity along the centerline is distorted from the initially

uniform distribution and becomes concentrated locally in two regions. The layer breaks

and forms a pair of vortices behind the trailing edae.

A consistency test between the simulations and linear inviscid stability theory can

be made by evaluating the Strouhal number for the initial instability region. Linear

theory predicts that the Strouhal number,

se fo= f (2)

of the most amplified frequency, i.e., the natural frequency of the mixing layer, is

St, = 0.032, changing only within 5 % between R = 0 and R = 1 (Ho & Huerre 1984).

To calculate the nondimensional flow p,-rameter St, the frequency f is scaled by 0, the

initial thickness of the shear layer, and the mean free stream velocity E given by

S_ (V, + V)

2

We define a Strouhal number relative to an initial shear layer thickness 00 = AY, where

AY = 0.012 cm is the length of a cross-stream cell at the centerline. This is appropriate

for our initial step function velocity profile. Then, we can estimate the wavelength of

the most amplified mode from the approximate size of the vortical structures in the

bottom panel in figure 2. We obtain St 0.040, in reasonabie agreement with St,.

Figure 3 shows the subsequent evolution of the instabilities. The first two panels

show the beginning of the build-up of new centers of vorticity at the ends of the undis-

turbed layers, near the developed vortices. In the last two panels the vorticity layer

breaks up further and new vortices are shed. The new vortices roll around neighboring

vortices and, as before, new vorticity centers build up at the ends of the undisturbed

vortex strips. Figure 4 shows vortex mergings and new vortex generation. Thus we see

a pattern evolving in which finite-sized vortices develop at the ends of the undisturbed

layers, grow, separate, and then merge with the neighboring structures.

Figures 5 and 6 show streamlines of the velocity field in a reference frame moving

with the fluid at velocity ti, corresponding to R = 1 and R = 0.82, respectively.
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These figures again show the reinitiation pattern through a different flow visualization.

Results for two different velocity ratios are shown to emphasize that the reinitiation

pattern is independent of R. The top panel in figure 5 (for R = 1, i.e., for V, = 0)

shows the reinitiation of the vortex roll-up (left side) after the formation of the initial

vortex pair (right side). In time, the new vortex grows and begins its pairing with the

neighboring vortex. In the last panel reinitiation begins again at approximately the

same location as it did earlier in the top panel. Figure 6, the later evolution of the

flow for R = 0.82, shows the first vortex merging. Although the reinitiation pattern

for smaller R is the same, the pattern is shifted downstream. This is expected, since

the growth rates of the Kelvin-Helmholtz instability increase with R (see, e.g., Ho &

Huerre 1984). The process is shown at later times in figure 7.

The calculations were initiated with a step-function velocity profile along the whole

streamwise extent of the computational domain. This procedure initially masks the

spatially-developing nature of the flow. Figures 2 - 4 are reminiscent of a temporally-

developing mixing layer with upstream-downstream symmetry. Essentially the same

reinitiation pattern is observed on both sides of the leading pair of vortices. This sug-

gests that the reinitiation of the vortex roll-up is mainly due to the effects in the nearby

flow field, i.e., to the interaction of the edge of the vorticity layer with the immedi-

ately neighboring vortex. There is a strongly nonlinear interaction between the edge

of the vorticity layer and the vortex. The result of this interaction is that a vorticity

clump appears in the layer, near the edge, while the layer becomes progressively thinner

upstream of the edge. This eventually leads to vortex shedding.

C. Feedback Phenomena

At later times the flow visualization exhibits the same basic pattern of reinitiation

near the splitter plate. New vortices are formed farther and farther from the leading

roll-up, which has moved downstream. One effect of the vortex pairings is the gener-

ation of subharmonics of the mode that was originally most unstable. The panels in

figures 8 and 9 show that the region upstream of the pairing is modulated with a wave-

length of the order of the dimensions of the resulting merged structure. The modulation

perturbs the vortices by displacing them in the cross-stream direction. This induces

pairings when the perturbation has the proper phase relationship with the vortices, as

indicated by previous numerical simulations (Riley & Metcalfe, 1980).
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It is important to test the calculations to ensure that the results are inherent in

the equations and do not arise from the numerical solution procedures. For example,

a stringent test of convergence is to change the computational cell spacing and do

the calculations again. We performed additional calculations using 600 x 120 com-

putational cells in a mesh uniformly spaced in the streamwise direction. Since these

calculations showed no significant differences from our original ones, we felt that the

original calculations had converged and the results are independent of the gridding in

the streamwise direction. In addition, we note that the outflow boundary condition

extrapolation used here (Grinstein et al. 1985) depends explicitly on the size of the

last cell in the X direction, which differs by a factor of eight from the smaller to the

larger meshes used. Thus this test also ensured the basic insensitivity of the results to

changes in both the location at which the outflow boundary condition is implemented

and its particular expression. The independence of the results relative to the gridding

in the cross-stream direction was checked by comparing calculations on a 300 X 240

computational grid to the standard 300 x 120 results.

The panels in figure 9 show a steady pattern near the trailing edge. Shedding

and initial pairing of vortices occur regularly at approximately fixed distances from

the trailing edge. The largest structure on the right goes through succesive pairing

processes, by which it grows as it moves further from the splitter plate. Mergings

which involve more than two vortices become possible upstream as the wavelength of the

modulatibn increases. The third panel, at 0.69 ms, shows a wavy shear layer inducing

an interaction among three vortices. This three-vortex interaction is shown with greater

temporal resolution in figure 10. The vortices are drawn together in one part of the

period of the modulated shear layer, as they coalesce into larger structures. After

the three-vortex interaction, mergings with the leading vortex structure are delayed

because the smaller vortices have merged among themselves. Then the large structure

appears somewhat decoupled from the upstream shear layer. Figure 11, taken from a

calculation for R - 0.67, shows two such mergings where three vortices roll up into

larger ones as a result of these collective interactions involving more than two vortices.

The flow visualizations are reminiscent of the multiple-vortex mergings observed by Ho

& Huang (1982) in their experimental studies of forced mixing layers. As the larger

structure on the right side of the panels reaches the upper wall of the chamber (e.g.,

at t -, 0.9 ms, for R = 0.82), further development of the downstream flow is inhibited.
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As mentioned in the introduction, there are several indications of feedback phe-

nomena in the experimental studies of mixing layers and jets. In the case of forced shear

layers, a feedback loop has been postulated to exist between a wave convecting the in-

stabilities downstream and an acoustic wave propagating pressure pulses upstream (Ho

1981; Laufer 1981). Laufer & Monkewitz (1980) have shown that the locations of the

mergings observed in the forced-jet experiments of Kibens (1980) satisfy the feedback

equation (Ho & Nosseir 1981)
Xi + , N 3-- -f,(3)

where Xi, a, fi, and N, are, respectively, the location of the i-th merging, the acoustic

speed, the merging frequency, and an integer which is fixed for a given feedback loop.

The merging frequency is reduced by a factor of two at each pairing. In general, fi =

fo/2i, where f. is the frequency of the most unstable mode at the initiation of the shear

layer. Equation 3 is obtained by requiring that the phase difference between the two

wavetrains at any point be 27rN, and by assuming that the downstream phase velocity

is constant along the paths. The vortex merging induces a perturbation at the trailing

edge which is then convected back to the merging location. The merging location is

such that this process takes place over an average time that is an integer multiple of the

pairing period. This average time is approximately the sum of the acoustical upstream

propagation time plus the convection time downstream. The feedback model predicts

that the distance between the virtual origin of the flow where the roll-ups initiate and

the first pairing event is equal to the distance between the first and second pairings.

In the case of free, unforced mixing layers, the pure tone resonances seen in the

forced experiments are unlikely. Fluctuations, such as perturbations in the inflowing

streams arising from turbulence or boundary layers, are always present. These fluctu-

ations introduce changes in parts of the feedback loop, and these changes cause time

variations in the magnitude of Xi. Our simulations of idealized, unforced mixing lay-

ers have minimal externally introduced fluctuations, and do, however, show evidence

of spatial coherence. A first pairing occurs regularly at an approximately fixed loca-

tion (Xi) from the trailing edge, as can be seen in figure 9. In addition, the distance

(X 2 - XI) between the second and the first pairing location is approximately equal to

the distance (X1 - Xo) between the first pairing location and the location where the

roll-ups initiate (see, e.g., the bottom panels of figures 9 or 10).
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We have also tested the effect of the separation between the side walls on the

development of the flow. A characteristic time in the chamber is the sonic transit time

between the walls or, equivalently, the time for a pressure pulse to propagate from the

centerliie to a wall, reflect, and return. For the cases discussed above, in which the

smallest separation betweeen the walls was used (see figure 1), this characteristic time

was T, - 0.18 ms. For the larger domain, the characteristic time was T2 - 0.40 ms.

Figure 12 shows a sequence of panels with results from a calculation on the larger

domain for R = 0.82. The panels are for the same times as those in figure 8 for the

smaller domain. The top panels of the figures are essentially identical, indicating that

the basic process of reinitiation and evolution of the instabilities at the earlier stages is

relatively independent of the separation between the walls. This should be true as long

as the time elapsed since the initiation of the instabilities (at t = to ; 0.1 ms) is smaller

than the characteristic time Ti. At later stages, shear layer modulations upstream of

the larger structure can be observed in both figures, with approximately the same

wavelength, but different phases. Because of these phase differences, the locations of

the induced vortex pairings are different. The phase differences we observe between

the larger and smaller domain calculations result from the differences in the pressure

pulses which have propagated upstream from the large structure. In the large domain

calculation, these pulses have not yet reflected from the walls, since (t - t.) < T2. The

later time, larger domain panels for (t - t0 ) > T2 show the same general flow features

as seen in the case of the smaller domain. Figure 13 shows a sequence with three

vortices merging. This sequence is very similar to that shown in the first four panels

of figure 10.
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III - A MODEL FOR THE REINITIATION OF VORTEX ROLL-UP

A. The Model

As discussed in Section II, the simulations show a pattern indicating that the

reinitiation and the self-sustaining nature of unstable vortex roll-up depend strongly

on the nearby flow field. The results suggest the simplified flow model below, which

gives insight into the mechanisms involved in the reinitiation process.

As an initial flow, consider an unperturbed two-dimensional vortex sheet extending

from -co to +oo in X at Y = 0. This sheet separates two equal and opposite semi-

infinite streams in a frame of reference moving with the mean free-stream velocity ii.

As in our simulations, variations in the Z direction are neglected but the center of our

coordinate system moves downstream tracking the element of fluid which was initially

at the trailing edge of the splitter plate. The unperturbed velocity field caused by the

thin shear layer can be assumed to have a profile described by the hyperbolic tangent

function (see, e.g., Ho & Huerre 1984),

u(*) =-U. tanh 07Y\ (4)

where
(VM-V.) _i

2

This thin vortex layer has a thickness of 0, which we take to be very small in what

follows. There is a corresponding vorticity profile which varies as I cosh(2Y/o) ]- 2 k.

As 0o will be small, the quantity of importance is the integrated vorticity across the

layer, i.e., 2U., the circulation per unit length across the layer. Figure 2 shows that the

initial roll-up of the shear layer appears as a growing finite width strip. The vorticity

in this strip clumps into two finite-strength spanwise vortices placed symmetrically

above and below the center of the initially uniform shear layer. Figure 14 shows this

situation schematically. In our analytical idealization the circulation which was spread

through the gap, from -X. to X., forms two vortices. Each vortex has circulation

2U.Xo, located at distance r. and angles -yo and -yo + ?r relative to the origin of our

moving coordinate system. The vortices grow by increasing the width of the gap and

incorporating the vorticity which must be conserved as the gap widens.

The total velocity field is thus composed of three terms,

u = u(° ) + u(-) + u (V) ,  (7)
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where uco) is the velocity of the initial shear flow given by equation 4, u(-) is the

velocity of the flow associated with the missing strip of positive circulation between

-X, and X., with circulation per unit length -2UoX 0 , and the third term, u(v), is the

flow associated with the two vortices. Since circulation is conserved, the overall flow

far away from the disturbed region about the origin reduces to 4U, i as required.

The expression for the velocity due to a specified vorticity distribution w is given

by (Batchelor 1981)
u Cx) -4-fs xw 3 , (8)

where s = x - x'. For the substracted strip we obtain

7r f [ (X-X')2+Y2  (1x)

These integrals can be reduced to quadratures, giving expressions for u and u )

u tan- 2XoY ] , (1la)

Xr [ Y2 + X2 X 2

JO (X,Y )  - o (X-X,)2 + y (11b)27r (X + Xo)2 + Y 2  " (

Figure 15a shows streamlines of the flow determined by the sum u(O) = u(O) + u(s).

As seen in these consistent velocity fields, a gap in a vortex sheet widens as the edges

of the vortex sheet roll-up.

Finally, we introduce the contribution to the velocity field due to the two vortices

with centers at (Xe, Y,) (upper vortex on the left) and (-X., -Y,) (lower vortex on

the right). Here, X., ro cos'o and Y, = ro sin -y. Rather than using point vortices,

we use a more realistic model with finite cores. This avoids introducing singularities

in the model. The core radius Po is chosen such that Po < ro. The expression for the

contribution to u from these vortices is:

u(M)(X,Y) = XoUo (+r + fr) , (12)

7r

where

r+=-(Y+Y,) (X X,) j ,

1/jr±12, if ir±1 > po
/+f= 1/p2,  if lr±I :l po
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Typical streamlines for the flow field due to the vortices are shown in figure 15b. The

total velocity field is obtained by substituting the contributions from equations 4, 11

and 12, in equation 7.

The model parameters are Uo, po/X 0 , -yo, and the ratio ro/Xo. The quantity Uo

fixes the velocity scale in the reference frame moving with the vortex pair. Since we

are interested in the flow field outside the cores of the vortices, the results presented

below are actually independent of po/Xo, which we have chosen to be

po/Xo < 0.05.

In addition, we can determine the relevant ranges of the other parameters from the

simulations discussed in Section II. These are

1600 < -yo < 1750,

0.5 < -Lo < 0.7,

and
0. - 0.012 cm.

A general trend observed in the simulations was for - to approach 1750 and ro/Xo

to approach 0.5, as R approaches 1.0. The limiting situation, R = 1, corresponds to

having the lower stream emerging into a quiescent background, i.e., V, = 0.

Figure 15c, shows streamlines for the total velocity field u given by equation 7.

Comparing this to the top panel of figure 5, or the bottom panel of figure 2, we note the

similarity in the flow patterns described by the velocity field u and the flow patterns

in the numerical simulations.

B. Asymptotic Behavior of the Velocity and the Reinitiation of the Vortex Roll-up

We now derive an expression for the asymptotic behavior of the velocity close to

the line of the undisturbed layer, Y = 0, for X < -Xo. This expression is important

for understanding how upstream vortex roll-ups are reinitiated.

We can find the first order corrections to the streamwise velocity u( °), due to the

redistribution of vorticity, from equations 11a and 12. Using the expansion

arctan(a) ; a + 0 (a')
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for jal < 1, with
2XQY

(y 2 + X 2 _ X2)2

2X0Y[ (Y -X
X2--- 1+0 X2

for IXI > 1Y I + Xo we obtain,

U11(XY) - 2X.UO Y + [0 4 (13)

In the same limit, equation 12 gives

U()(,Y 2X0 U0 Y 4XOUOXVYU, 1 __)4] (47rX2 + r X3 + 0 . (14)

The leading terms in equations 13 and 14 cancel, as we add u,(") and u.(') to the

expression for u,(O) given by equation 4. Hence, for the total streamwise velocity field,

we have

u'(XY) = -Utanh 
+ 4X 0UXY +0

(2--I ( sin +2r -0 1.(15)
= - U ,ta n h 2 sin (2 -1) . 0) 3 04+ "

In an analogous way, we can start from equation llb and use the standard expan-

sion (for IP1 < 1)

log ( -+( + o (S),

with
2XXoP= (_X2 + x 2 + Y l) ,

to obtain for IXI > max(IYI; X.)

U (S) 2 2U4] (16a)

-_ 2 + - + + (16b)
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Combining equations 16a and 16b, we find

u(, )  2U °, r, 2Xo 2 (Xo ) 2y X.
U(X,+Y) = ( ) cos (2-y.)+ ( +4sin(2) -

(17)

The negative vorticity strip and the pair of vortices add a small positive term

to the streamwise velocity uz(o). The lowest order correction term is independent of

Y and is orders of magnitude smaller than u2 (O),. In the case of the cross-stream

direction, a nonzero velocity component is now present. Equations 16 indicate that the

asymptotic contributions from the strip and the pair have opposite signs. Thus the

leading terms cancel. The remaining terms reinforce each other for (3/4)7r < -y, < 7r.

The resulting negative component, that has contributions from both the vorticity strip

and the vortex pair, tends to deflect the shear layer downwards and along the centerline

for X < -X.. This is due to the counter-clockwise circulation associated with the

redistributed positive vorticity from the vortex sheet and becomes more important

closer to the left vortex. The first correction term, of order (Xo/X) 4 , depends on Y.

This term either enhances or reduces the leading cross-stream velocity term, depending

on whether Y is positive or negative, respectively.
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C. Spatial Development of the Model.

We next examine the spatially developing problem, which is more closely connected

to the simulations. We define a time-dependent velocity field which represents the veloc-

ity field during the period of growth of the initial vortex pair observed in the simulations.

The pair of vortices is assumed to grow linearly, with fixed (ro/Xo), (po/X"), and -1,.

This growth starts at time t, at x, = x(tl), the point in the shear layer at which a

perturbation is first perceived in the flow visualizations. We follow the linear growth up

to time t 2 when the center of the vortex pair is located at x 2 = x(t 2 ) and the vorticity

concentration at the edges of the undisturbed vorticity layers is noticeable. For exam-

ple, for the case R = 0.82 discussed above, this growth period extends from some time

before the first panel in figure 2 to approximately the time of the top panel in figure 3.

The parameters of the model were chosen to fit the flow visualization at t = t 2. Linear

growth was assumed for X. between X. = Xo(tl) = 0.0 and Xo = Xo(t 2).

Since the velocity of the flow is known, we can calculate the motion of any particle

in the flow and visualize the spatial development of the flow model by streakline plots.

Streaklines are produced by injecting a set of passive markers into the flowfield at fixed

time intervals. They are injected at the location x = x,, where the trailing edge of the

splitter plate is assumed to be located, and for various values of Y above and below

the centerline. The convection of the markers is studied by integrating the equations

dri (t) (UabX,(t),y,(t),t) I(18a)

dt = U41 b

between t, and t 2 with the initial conditions

r1(ti) = (x.,yi) , (18b)

where the subscript refers to the i-th marker. The velocity ul~b at r in the laboratory

reference frame is
U la XYt + U (Xj - XCtY, 

where u is given by equation 7, and x,(t) = i(t - ti) + xi, is the location of the center

of the vortex pair at time t.

Figure 16a shows a typical streakline plot corresponding to R = 0.67. Markers

with the "-" and "+" symbol are injected above and below of the interface between the
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two fluids, respectively. The solid rectangles indicate both the locations of z, the edges

of the undisturbed layers, and the centers of the vortices. In this figure the vertical scale

is uniformly stretched relative to the horizontal scale by a factor of two. Figure 16b

shows isovorticity contours from the numerical simulations at t = t 2 . A noticeable

feature in the streaklines is the beginning of a roll-up in the flow near the edges of the

vorticity layers. This can be understood in terms of the superposition of the velocity

fields u("J) and u(u). Inspection of figures 15a and 15b shows that the cross-stream

velocity components of the fields have opposite signs outside of the region between

the vorticity layers, where they nearly cancel out (see, e.g., equation 16). Because the

axis of the vortex pair is not parallel to the centerline, there is no cancellation of the

cross-stream component in the neighborhood of the edges of the layers at X = ±X".

Approaching the neighborhood ahead of X = -X. from below, for example, u(0) s

greater than U(
I up to a location above the centerline where they are equal. Above

this, u( ') becomes more important.

In the limit when -e -* 1750 and r0 /X --+ 0.5, as R --+ 1.0 the coefficients of

the leading term in equation 17 tend to increase. Thus as R -- 1.0, the downwards

deflection of the shear layer for X < -X, due to the vortex pair is more pronounced

and we can expect that the trend towards the reinitiation of unstable vortex roll-up

becomes more important.

The results shown above for the breakup of the vorticity layer and subsequent

vorticity roU-up and redistribution indicate that the model proposed contains the basic

mechanism for triggering the reinitiation of the vortex roll-up present in the numerical

simulations. The subsequent reinitiation of the vortex roll-up can be studied by extend-

ing the same procedure to model the further redistribution of the vorticity at one side of

the initial vortex pair. The roll-ups near the edges of the vorticity layers correspond to

the centers of vorticity observed in the numerical simulation (see, e.g.,figure 16a). The

roll-ups are mainly the result of the interaction between the edges of the undisturbed

vorticity layers and the immediately neighboring vortices. The thinning of the shear

layer (especially from above) observed upstream from the vorticity center at the left

edge in the simulations is consistent with the asymptotic expression obtained above

for uy given in equation 17. There is an induced velocity distribution associated with

the accumulation of positive vorticity at the edge of the shear layer which tends to

carry fluid around the edge in a counter-clockwise direction. This in turn increases
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the concentration of vorticity at the edge. The fluid tends to move more slowly above
the shear layer behind the edge, thus increasing the pressure in that region due to the
relative accumulation of fluid. This will induce further thinning behind the edge and

finally lead to new vortex shedding.
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IV - SUMMARY AND CONCLUSIONS

We have presented results of the numerical simulation of the evolution of the

Kelvin- Helmholtz instability and the subsequent formation of large scale structures in

a planar, unforced, spatially-evolving mixing layer. The focus of this work has been the

investigation of the feedback mechanisms involved in the reinitiation of the vortex roll-

up behind of the trailing edge of the splitter plate. We have also studied the spreading

of the mixing layer and the role of the feedback from downstream on the growth of the

mixing layer.

The results indicate that the reinitiation of vortex roll-up, and hence the self-

sustaining nature of the flow instabilities, depends strongly on the nearby flow field. An

analytic flow model was presented and used to gain insight into the reinitiation process.

The process of reinitiation starts with the concentration of vorticity at the end of the

relatively undisturbed shear layer facing the most recently shed vortex structure. This

is foLowed by vortex shedding. Newly generated vorticity is concentrated at the end

of the mixing layer, and this self-induced vorticity redistribution leads to new vortex

shedding. This is due mainly to the near field interaction of the newly shed vortex with

the vorticity layer.

Spreading of the mixing layer through vortex merging depends on the pressure field

induced by the downstream fluid accelerations. Because of the particular way in which

our simulations were initiated, i.e., with a perturbation behind the trailing edge of the

splitter plate, it was possible to observe the effect of the downstream events on the shear

layer upstream. The shear layer is modulated with a wavelength of the order of the

dimensions of the larger structure downstream. When this modulation is appropriately

phased with the structures it produces vertical displacements of the vortices upstream,

which induce mergings. Collective interactions involving mergings of three vortices,

were observed when the wavelength of the modulation became sufficiently large. These

collective interactions were similar to those observed in the experiments with (low

frequency) forced mixing layers by Ho & Huang (1982).

A noticeable feature of the simulated flow was the temporal coherence between

the first few roll-ups. This indicated an underlying degree of organization in the un-

forced flow. The coherence is due to feedback between the downstream events and the

incoming fluid. Generally, this organization is not expected because of the unavoidable
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presence of fluctuptions in the flow field due to boundary layers in th ! splitter plate

and turbulence in the inflowing streams. The present numerical simulations model the

!arge scale features of an idealized system in which these potential perturbations have

been minimized. In this way, we have been able to isolate the features of the flow dy-

namics in the absence of such fluctuations. This coherence in the flow pattern was also

observed in numericai studies of unforced axisymmetric jets (Grinstein et al. 1986).

In these calculations it was shown that the presence of a low level of random inflow

perturbations weakened the organization of the shear layer, and hence there was less

temporal coherence between the vortex structures.
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FIGURE CAPTIONS

Figure 1 Schematic diagram of the flow configuration showing the initial and

boundary coniitinns for the domains used in the splitter-plate simulation. The val-

ues between parenthesis correspond to the larger domain, used to study the effect of

the separation between the walls.

Figure 2 Sequence of isovorticity contours for the initial stages in the development

of the Kelvin-Helmholtz unstable flow for the splitter plate problem for calculations

in the smaller domain in the case R = 0.82. The trailing edge of the splitter plate

is located at X = 2.03. The contour levels are equally spaced, with an interval of-

1.0 x 10 s- 1 . The vorticity at the outermost contour is -1.0 x 104 S- 1, decreasing to

a minimum of -3.0 x 10r s- 1 near the tip of the splitter plate.

Figure 3 Isovorticity contours, as in figure 2, for later stages in the development

of the flow.

Figure 4 Isovorticity contours, as in figure 2, for later stages in the development

of the flow.

Figure 5 Streamlines of the velocity field in a reference frame moving with the

mean free velocity, for the case R = 1.0.

Figure 6 Streamlines of the velocity field, as in figure 5, at later stages, for the

case R = 0.82.

Figure 7 Isovorticity contours, as in figure 2, for later stages in the development

of the flow.

Figure 8 Isovorticity contours, as in figure 2, for later stages in the development

of the flow. Contour levels are equally spaced, with an interval of 6.0 x 103 s- 1 . The

vorticity at the outermost contour is -2.0 x 103 s - 1, decreasing to a minimum of

-9.8 x 104 S- near the tip of the splitter plate.

Figure 9 Isovorticity contours, as in figure 8, for later stages in the development of

the flow. X., X 1 , and X2 indicate, respectively, the approximate virtual origin of the

flow (where the roll-ups initiate), and the first and second merging locations.

Figure 10 Isovorticity contours, as in figure 9, with a greater temporal resolution

Figure 11 Isovorticity contours, showing three-vortex mergings, as in figure 9, for

the case R = 0.67. Contour levels are equally spaced, with an interval of 6.0 x 103 s-1

23



The vorticity at the outermost contour is -2.0 x 103 s- 1, decreasing to a minimum of

-9.8 X 104 s - 1 near the tip of the splitter plate.

Figure 12 Isovorticity contours, as in ' gure 8, for the larger domain.

Figure 13 Isovorticity contours, as in figure 12, at later times.

Figure 14 Schematic diagram of the flow configuration for the definition of the

vortex pair model.

Figure 15 Typical streamlines for the velocity fields in the vortex pair model, a)
u(°8),I b) u (' ) , c) u.

Figure 16 Spatial-development of the flow, for R = 0.67. The fixed parameters of-

the model are ro/X° = 0.62, po/Xo = 0.02, and -yo = 1650. a) Calculated streaklines

using the vortex pair model; b) isovorticity contours from the numerical simulations.
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APPENDIX H.

Review of Subgrid Closures and Other
Aspects of a LES of

Premixed Turbulent Cumbustion



Memorandum: Review of subgrid closures and other aspects of a LES of preMixed

turbulent caibustion

Fran : Paul A. Libby, Cbnsultant*

Berkeley Research Associates

Date: July 28, 1986 June 20, 1986

Abstract: A LES of premixed turbulent ccmbustion requires models for the tur-

bulent transport of manentum and species due to fluctuations at the subgrid

scales. 7he extensive literature relative to such models for flows with con-

stant fluid properties is reviewed in order to rationalize to the extent pos-

sible models for application to turbulent combustion. Other aspects of such a

LES application are also discussed.

* Also Professor of Fluid Mechanics, University of California San Diego,

La Jolla, California 92093
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INTRODUCTION

In [1) and [2] we discuss the LES of premixed turbulent cambustion involving

the idealization associated with the Bray-Mbss model of the thennochemistry of

such combustion. hat model incorporates assunptions camonly accepted in

caunbustion theory ad when applied to a LES reduces the describing equations

to those for conservation of mass, momentum and a progress variable c(m,t)

which detenines the entire thernochenical state of the gas. With averaging

as called for in a LES the nonlinearity of the partial differential equations

leads to flux terms which represent turbulent transport due to scales smaller

than the grid size, i.e., to the subgrid scales. In [1] ard [2] we are rather

casual regarding the models to be applied to remove these terns and thereby to

achieve a closed set of equations. It is the purpose of the present mneoran-

dum to reconsider such modeling by first distilling the extensive literature

on subgrid models for flows with constant properties and by then setting forth

the most pranising models for a LES of premixed turbulent carbustion. In the

course of carrying out this literature review we uncovered other aspects of a

LES of int aspects of a LES of significance and we therefore comment on them.

An interesting historical perspective on subgrid scale modeling is given

by Herring [31 who notes that Lilly [4] in 1967 "...appears to be the first to

make (eplicit) the separation of canputational grid scales fran subgrid

scales by introducing volune averaging cver the canputational grid. Sud

averaging is implicit in earlier work but explicit use of grid averaging did

not occur." The notions of volume averaging and filtering are now standard in

the vocabulary of LES. It is also interesting to note that Lilly [4] in the

sane reference states:"It is totally inconceivable that a canputer could
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resolve both the energy containing and dissipative scales in a high Fkynolds

number regime but it is not at all unlikely that the limits of resolution

could extend fran the largest energy containing scale into the inertial

subrange." This perspective continues to motivate interest in LES despite the

significant increase in canputing power which has occured since 1967.
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ANALYSIS

We start our considerations by writing in Cartesian tensor notation the funda-

mental partial differential equations describing the system to be discussed,

namely

+ (u)= 0 )+ xk

k1

where we neglect molecular transport.* In doing so we implicitly assume either

that applications are confined to free shear flows or that the viscous sub-

layrs are not resolved in flous involving ivalls.**

These five equations for the velocity components ui (x,t) , the pressure

P(x,t) and the progress variable c(x,t) are onpleted by a model for the chen-

ical reaction tem w and by the algebraic relation for p (c) given by the

Bray-Moss model, nanely

Pr (4)

where t is a heat release parameter and Pr is the density within reactants.

* The irdices k and 1 are reserved for summation, i.e., they appear only in
pairs. Other indices which might be repeated do not imply summation.

** Sine there appears to be sone uncertainity regarding the boundary coundi-
tions applicable at solid surfaces (cf., e.g., Deardorff [5)) , we discuss
later this matter.
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In [21 we propose a model for w.

It is worth noting that with the chErnical reaction term suppressed

BXs. (L) - (4) describe low speed mixing of a binary systeM. In this case c

is the mass fraction of one species and t is. a molecular weight parameter.

Ebr example, if helium mixes with air, then -t = 6.2. The implication of the

notation p (c(x,t)) applies to binary mixing. The only aspect of the following

discussion which does not apply to this nonreactive case pertains to the

existence of flamelets and to regions of constant density separated thereby.

In binary mixing the density can take on all values between the limiting

values associated with the two pure species. However, the filtering, modeling

and numerical analysis can be applied without change to binary mixing.

In a [ES Eqs. (1) - (4) are volume averaged by application of a filter

function G(x' - x) with a characteristic dimension6 roughly equal to, but in

general different fran, the spacing of the finite difference grid, so that

filtered values of the dependent variables are calculated. We suggest in [1

that for the variable density flow of interest in the present context Favre

averaging is appropriate so that the filtered velocity canponents are given by

(x,t) Di (x't) = : dx' G (x' - ) p(c(x' ,t)) ui (x' ,t)

= pui (x,t)

where the volune averaged density is

(xt) = dx' G (x' - x) P(c(x',t))
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Thus tilded quantities are mass averaged, barred quantities are conventionally

averaged. Similar expressions prevail for the filtered progress variable

Z!(x,t) and the averaged pressure p(x,t) . Note that if molecular transport is

included, Favre averaging canplicates the molecular terns but within the con-

text of the present discussion this feature can only be important when a tur-

bulent flame impinges on a wall. In binary mixing attention must be devoted

to the entire rall region but as noted earlier this is the case whether Favre

or conventional averaging is Employed.

It is worth noting that the application of fintie differencing is

equiivalent to a form of filtering. Consider the frequently adopted central

diference representation of a first derivative and its interpretation fran

this perspective, namely

@xI Un + un -  x+h 1h - i d x 'n 2hx-I h EM

In this case the filter function is tw valued, 1/2 h for x- h < x' < x + h

and zero elsewhere. This is the filter employed by Deardorff [5]. Finite

difference representations of higher order derivatives can be synthesized by

canbinations of first order derivatives and can thus be interpreted in terms

of sums and differences of filtered first derivatives. Fram this perspective

the filtering used to develop the equations solved in a LES should be con-

sidered preliminary to the differencing subsequently used to solve numerically

the resulting partial differential equations. This is the separation of com-

putational and subgrid scales noted earlier.

In many prem ixed reacting flows of applied interest reactants and
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products are separated by surfaces, laminar flamelets, whose thickness is

estimated to be less than a Kolmogoroff length and thus to be at an

unresolved, subgrid scale. Accordingly, only at grid points several multiples

of the filter length/ fran the instantaneous location of the flamelet does

the density differ fran either Pr or Pp = Pr/ + t) . Thus for most grid

points the averaging uk Eq. CD) reduces to that conventiondlly applied in LES.

The implication is that the subgrid models carefully developed for constant

density flows apply directly to premixed turbulent canbustion within the con-

text of the Bray-Moss model except in the neighborhood of the flamelets where

we find that explicit variable density effects enter the subgrid modeling.

It is appropriate to note in this regard that the analysis of [1 is

based on tracking the flamelet location, i.e., on flanelet dynamics. An

alternative hich may be numerically more convenient is discussed in [2] and

assumed to apply here; it is based on the calculation of c(x,t) by solving the

filtered form of Etj. (3) such that - is zero or unity at all grid points

except those within several multiples of/ fran the instantaneous flamelet

location.

Je identify the difference between a grid point value of a fluid mechani-

cal variable and its volume averaged counterpart as- a fluctuation; thus as in

the usual turbulence phenanenology involving Eavre averaging

u i (x,t) = lui (x,t) + u.i" (x,t) (7)

where

"= , u
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Balance equations for statistical quantities involving the fluctuations can be

developed and closely resernble those used in second monent methods and indeed

in one subgrid closure method for LES the transport coefficient involves the

"turbulent kinetic energy ", i.e., R = / , and thus a balance equa-

tion for R (x,t) is inorporated into the systen of describing equations (cf.

Lilly [4] and Grotzbach and Schunann [6]) . However, more generally second

manent quantities involving fluctuations are expressed in terms of prime

dependent variables, i.e., closure is achieved at the first mcment level.

The Filtered Equations and the Subgrid Terms

A review of the existing literature on LES indicates that applications to date

are limited to constant density flows and that for such flows a variety of

subgrid closures are Employed, a situation indicative of active development of

the method. We have found two referenoes [6] and [7] describing applications

involving passive scalars, either small temperatures or small concentrations

of a contaminant, and thus of interest in the treatment of Et. (3). Amnong the

extensive literature on subgrid modeling we find the presentation of Leslie

and Quarini [8) relative to the deomposition of the several contributions to

the subgrid terms clear and direct and we therefore tailor our discussion

after their work; they in turn credit Leonard [9] with guiding their exposi-

tion. The review article by Rogallo and ?tin [10] is also an excellent source

for many aspects of LES including an extensive bibliography circa 1984.

When volume averaging is applied to Eqs. (1) - (3) we obtain

+5x Uk) 0
k
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t) + +

'3t Ui) + ! t) -- - ik Tik)

'k

,here the last terms on the right side of Els. (9) and (10) describe the

influence of fluctuations at the subgrid scale on the filtered variables.

Specifically, the terms Lij and Li represent the Leonard stresses and Leonard

fluxes* defined by

L j = !iCj- P 150j (i1)

L r Pj - P Uz (L2)

%bile the tems Tij and Ti represent the true subgrid stresses and fluxes and

are given by

Tij = ui'' j + .uj''i + Pui''uj" (13)

T= Pui'Z + Pc'' IU + puji' c'' (14)

The Leonard Tenns

In [9] the Leonard stresses are evaluated by expanding the irdividual filtered

velocities at x' in a Taylor series about x and by carrying out the requisite

volune averaging. When applied to variable density flows subject to Favre

averaging, this proceedure leads to the inten-mediate result

* This identification is new but involves a direct extension of the notion of

Leonard stresses to the turbulent diffusion of a scalar.
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LiJ 0 ibj ) ,Tdx' G (x' - ) x' - xk) P(c(x' t))
'k

+ .~--- X I G (V - x (x.k' -xk) (x' 1 - x 1 ) ~(c (X',Q

(15)

If the density is constant, the first term on the right is zero for filter

functions which are synmetric in each coordinate direction and the second term

is non- zero only if k = 1. Thus we recover Leonard's result. The implication

of BE. (15) is that in the neighborhood of the laminar flamelets there is an

alteration of the Leonard stresses.

Realistic and proper evaluation of the integrals in Eq. (15) requires

knowledge of the location of the flamelet within the filter volume since

mments about x of the partial volumes occupied by the reactants with F = Pr

and products with P = rp within the filter volume are involved. In our

present approach the location of the flanelet is estimated fran knowledge of

the filtered progress variable t(x,t) with the consequence that only crude

evaluations of the integrals are possible. Numerical experimentation and com-

parison with data are needed to establish the adequacy of such an evaluation.*

To proced we provisionally assume that within the effective filter

volume we can approximate the density as follows:

* It is worth noting in this regard that if Z(,a,t) is known, then the fraction

of the filter volume occupied by product at each grid point is likewise known
fran V = (I + t) /(l + C Z!) which is exactly p in the Bray-Moss description
of the themochcaistry of prenixed turbulent cahbustion. We discuss later the
means of assessing subgrid models.
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(C(X',t) -R((X , t)) + t) (x,t) (N) (Xt) (Xk' - Xk) (6)
k

where fran Eq. (4)

d- (x,t) =-
d+ t Z(X,t))

Equation (16) has the correct limiting behavior; if Z: = 0,1, then r (c(x' ,t))

becanes either of the two limiting values of P. If the flame sheet is located

at x, the gradient ( Z/bxi) (x,t) is maxiimun and the maximun gradients of p

within the filter volume are cbtained. Finally, the series expansion of the

density via Eq. (16) is consistent with locating the flae sheet in terns of

the distribution Z(x,t) . Thus Eq. 16 provides a plausible, although perhaps

provisional, means for evaluating the integrals in Eq. (15) . Note that in an

application to binary mixing Bq. (16) is consistent with the Taylor series

expansion used for the the velocity canponents.

With this approximation Eq. (15) becanes

ii Yk (2 Z -2~Xk 1]k iP j (17)

where

002

Yi= I dx' G (x' - 4 (xi -xi)
-00

is a constant deperding only on the filter function. Ebr a symnetric Caussian

filter
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3/2

G W -x) 6 exp-6 (xk@ - xk) (xki - xk) (18)

the coefficient is independent of the index ad is found to be

Vi = Y = 4- 29)

At a location fully within either reactants or products so that c/x i = 0

Eq. (17) reduces properly to one of the two expressions for Lij given in [9].

Note that the Leonard stresses are proportional to2 Thus their model-

irg and inclusion are irdicated only if the finite differencing of the f il-

tered equations is second order accurate, i.e., involves errors of 0 (h3 ).

Many applications of LES employ fourth order differencing schenes (cf., e.g.,

1111).

Leonard [9] provides an alternative foun for L.j on the basis of expand-
1)

ing the product uiuj (x' ,t) about x,t (See also Eq. (5) of [10]); there results

a model possessing the unappealing feature of raising the order of the fil-
tered manentum equations, i.e., of involving b2 uiuj/Ax 6xk so that 6Lik/bx k is

third order. Although this feature is apparently recognized by research work-

ers involved in LES, it is not seriously considered.* In our extension to

variable density flows we suggest enploying Eqs. (L7) and (9) .

A similar calculation can be carried out for Li; in this case we approxi-

mate Z7(x' ,t) by expanding about x and obtain the following intermediate result

* Private ounmunication with Professor A. Leonard. In (7] a detailed discus-

sion of the differencing scheme used to treat the filtered equations contains
no mention of the third-order Leonard terms.
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analogous to El. 05):

L=,x # iZ) dx' G (x' - x) (xk (c(x',t)) +Li : 5 (UiD)xk' - Xk)

d G(x' - X (x' - Xk) PI' - Xl) p(c(x' ,t)) (20)
k 1

If we again use the approximation of Eq. (16) and Eq. (18) , this becnes

Li = Pr - - + (21)
(L + It 'N2 Oxk dx +PT~ Ti

In regions of the flow where Z: = 0,1 Eq. (21) yields, as it should, L 0.

The Subg rid Stresses ad Fluxes

There is an extensive literature on the modeling of the subgrid stresses T..1)

and a few references to the subgrid fluxes. Ebr constant density flows the

most widely used and thoroughly studied is an eddy viscosity model. Its gen-

eralization to the variable density flows of interest to us would appear bt

be*

) 4x - -k

where = = Tkk/ 2  is the kinetic energy of the subgrid velo-
*2 1uk Uk/f p is/

city fluctuations. Equation (22) with i = j and the definition of R are

interpreted as four equations for Ti and R given a model for the exchange

* The form given in [11 does not contract properly and should be replaced by

Etj. (22).
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coefficient PT and the gradients of the mean velocity , i/'x . In addition
1

01. (22) reduces properly upon contraction to an identity and for constant

density flows to the usual form of T...
1J

Various models for the turbulent exchange coefficient appear in the

literature of LES. A modification of the widely used Smagorinsky model is

1
= (c 2 2 k kl 2  (23)

where

1

is the mean rate of strain tensor based on the resolved velocities and where

c is an empirical constant. Values of c in the range 0.1 to 0.23 are found

to be required in constant density flows on the basis of a variety of applica-

tions.

Several exanples illustrate the unoertainities involved; in decaying iso-

tropic turbulence the requirenent that the canputed energy decay rate match

experimental data leads to c between 0.19 and 0.24. In channel flow Dear-

dorff [5] finds that c = 0.1. There appears'to be some indication (cf.

Ragollo and Mbin [101) that the uneertainities in c P can be reduced if the

mean rate of strain is removed fram the model for c Pi.e., if Eq. (23) is

replaced by

- 1
= p kl - 4)kl>) kl - A->1>  (4

where < .. > is an average of the mean rate of strain. In a statistically sta-

1)
tionary flow this mean quantity can be cariputed as a running average at each
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grid point or over several neighboring points while in a transient flow

averaging over some suitable plane or volune is indicated. On the basis of

these results we must anticipate that within the context of premixed turbulent

cambustion cP must be adjusted to achieve agreement with experimental data and

that a range of nunerical experiments must be undertaken. The selection of c

is part of the assessnent of subgrid models discussed later.

%b turn now to the subgrid flux Ti (x,t) ; Antonopoulos-Danis [7] intro-

duces a second empirical constant denoted c, %hich "...can be thought of an an

eddy Prandtl nunber" so that

T. 0 5)Ti  C' 'I-

BE canparing the predictions of a LES with the experimental data of Yeh and

van Atta (ii] on the decay of velocity and tenperature intensities in a heated

grid flow Antonopoulos-Domis concludes that c = 0.23, a value at the edge of

the observed range, and c. = 2.0. There is considerably less attention

devoted to assessing EL. (25) thatn to the constant density counterpart of

Eq. (22).

Evaluation of Subgrid Mbdels

The question arises as to the means for evaluating the accuracy of the models

of the Leonard stresses Lij, the Leonard fluxes Li, the subgrid stresses Tij

and the subgrid fluxes T i . Kb discuss this matter within the context of con-

stant density flows with the notion that similar means apply to variable den-

sity and reacting flows at least in principal. Generally such an evaluation

is based on camparisons of the predictions of same filtered variables measured
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in a related experiment, i.e., the distributions of the velocity canponents u~1

and the pressure p. If satisfactory agreemnent is achieved, it is assumed that

the subgrid modeling used to make the prediction is satisfactory at leat in

the limited sense implied by such an agreenent. It is recognized that this

evaluation is indirect and that more rigorous methods are desireable. In fact

this is the need addressed by Clark et al [12] uho carry out a direct numeri-

cal simulation of isotropic decaying turbulence in a cube of side L simulating

grid flow so that the velocity and pressure on a 643 grid for fifty time steps

provide a basis for evaluating subgrid models directly.

Tis proceedure is initiated by overlaying the 643 grid with a coarser 83

grid representing that used in a EES. -y filtering the 64 3-data with a top

hat filter possessing a width L/8 the filtered velocity-camponents and pres-

sure at each point in the 643 grid are calculated. Subsequently the fluctua-

tions in these velocity canponents and pressure are calculated at these sane

points.* The data on the fluctuations are then used to compute the subgrid

stresses u' and the contributions to the rate of strain tensor for the

filtered velocity field, e.g., 6ui/ xj, at each point of the 83 grid. Thus a

direct canparison of true subgrid stresses given by the direct nuerical simu-

lation and various subgrid models is possible.

Before discussing the details of the calculations in (12] it is wrth

noting an interesting and illuninating by-product of this proceedure as indi-

cated in Fig. 1 taken therefran. Shown is the distribution of the u-velocity

* Although these calculations can be carried out for each of the fifty time
steps, it appears that the detailed assessment of the subgrid models in (12]
is based on the data at one time. Note that since periodic boundary condi-
tions are imposed on the edges of the cube the filtering can be applied to all
point including those on the edges.
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cmponent along a line segment of the 643- grid at a particular time as given

by the direct nunerical simulation and by filtering as in a LES. We thus see

graphically for this one realiztion the variables u, u ard u'. Clearly the

filtered velocity exhibits the large scaale variations but not the small scale

fluctuations whose effect is presumably described by the subgrid stresses.

Such behavior is the central feature of the LES proceedure.

With a tp mot filter the filtered velocity components are calculated

fran the relation

_1

u (XiX 2 jX mt) - -7 u (x' subbl,x' 2 ,x' 3 ,t (26)
r li2j"3') 17 3 r 2xI3t

%-here the suns extend over points such that Xli-/ < x' 1 < xi +Zetc. With

the filtered velocities known the velocity fluctuations at each point of the

643 grid can be readily determined. The subgrid stresses are computed at each

point of the 83 grid fran the equation

u' U1 ( 1 u1 ( ) U'r ' s (li 'x2j'x3m't) = -- 2 U r u r s
17S

%here the sumations extend over the ranges indicated in connection with

Eq. (261 Finally, the contributions to the rates of strain associated with the

filtered velocities are cznputed at each point of the 83 grid by differencing

the filtered velocity canponents. Here there should be employed the sane dif-

ferencing schene as is used, or intended to be used, in the LES employing the

subgrid models being assessed. A similar procedure could be carried out for

the evaluation of the subgrid fluxes provided the appropriate direct numerical

simulation were available.

In Clark et al [12] models for the subgrid Reynolds streses u' .u' j are

assessed at various levels: at the tensor level, i .e., u' iu' directly; at the
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vector level, i.e., 6u'iu' j/6xm; and at the scalar level, i.e., ccmparing the

true ad modeled energy dissipation as given by the quantity uk 6 u'k u ' l/bxl.

Their assessnents are expressed in terms of correlation coefficients obtained

by averaging over all points of the 83 grid at one particular time so that 512

entries are involved.

% need give only a brief summary of the findings in [12]. Generally the

snagorinsky model which we have used as a basis of our suggestions for the LES

application to premixed turbulent cmubustion does as well as any other model

at all three levels, although at the tensor level the correlation coefficient

is only about one third. The following quote is illuninating: "The modeling

of the a subgrid scale Reynolds stress is not so good as to eliminate the need

for improvements but neither is it so bad as to cause one to reject it out of

hand; we are unable to find any model more accurate than Smagorinsky' s."

An interesting aspect of the results in [12] is the finding that fre-

quent, significant misaligrments of the stress and rate of strain tensors is

the principal source of errors, i.e., the cause of reductions in the correla-

tion coefficient. The implication is that refined models for the exchange

coefficient connecting these two tensors are not indicated, i.e., for exanple,

the use of second mcaent averaging to improve the subgrid models should not be

expected to lead to significant improvenents.

7te Wall Layer

Many applications of LES relate to hnogeneous flows with periodic boundary

conditions on the edges of cubes. Relatively little attention is devoted to

wall-bounded flows with the exception of channel flows studied by Dear-

dorff[51 , Grotzbach and Schumann [61 and Kim and Mo in [11]. Although Ragolla
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and Moin [101 state that "(t) he specification of boundary cord itions at smooth

solid boundaries does not pose any difficulty," there does indeed appear to be

a fundanental difficulty connected with such conditions as is clearly irdi-

cated by their subsequent discussion. Our concern can be expressed as fol-

lows: We know that the thickness of the viscous sublayer, the thin region

adjacent to the wall in which molecular and turbulent transport interchange

daninant roles, is several Komogoroff lengths in extent and is therefore not

resolved in a LES. Although finer grid spacing in the neighborhood of a wall

is indicated, full resolution of the viscous sublayer would imply either the

assignment of excessive cmputing capability thereto or the restriction to low

turbulent Reynolds nunbers. Either alternative is inconsistent with the basic

notion of a LES. Although no slip conditions are generally imposed at the

wall, this practice is difficult to rationaliy.

Deardorff [5] states: "In the absence of any known, rigorous fornulation

which would hold on each time step and at each grid point, the following boun-

dary conditions have been found to work satisfactorily." Those conditions

involve no slip in the crosswise velocity canponent and derivative conditions

at points half grid distances from the lower and upper walls. Grotzbach and

Schunann [6] use a similar ad hoc boundary condition by requiring the instan-

taneous wall shear to be perfectly correlated with the streanwise velocity

canponent one mesh cell fran the wall. Rogallo and Moin (10] discuss this

specification and conclude that "...measurements ... support this assunption

very close to the wall pvovided that a (sizable time delay between these two

quantities is introduced." The ad hoc nature of this specification is clearly

evident.

m ra! mlm m m l b I mm mmmmmiR mmmm m ~ m |! |J.1
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Two relatively recent publications explicitly address this issue. Chap-

man and Kuhn [14] report on a canputer experiment irnvolving a reduced form of

the Navier-Stokes equations appropriate for the descript4.)n of the thin

viscous sublayer subjected to periodic, two dimensional fluctuations at its

outer edge. These forcing fluctuations are chosen on the basis of experimen-

tal results. It is concluded that "(t)he results ... reveal a good potential

for constructing quantitative models of viscous sublayer turbulence founded on

experimental observations ... " Robinson [15] describes a detailed experimen-

tal investigation of the near-wall boundary layer utilizing a skin friction

meter and an array of hot wires in order to obtain instantaneous velocity pro-

files scaled in terns of all values. Although interesting data, probably of

future value, are obtained, they do not provide a definitive guide to the

proper boundary conditions in a LES.

The Filter Scale

Wb find surprising the lack of specific discussion in the literature related

to LES concerning the filter scales and the turbulence Feynolds numbers. In

[4] it is shoun that if A lies within the inertial subrane of the flow bein

studied, then the constant cP in the qnagorinsky subgrid model is fixed by the

universal spectral constant at 0.185 which is within the range of values found

to be appropriate for this constant by various other means. Even in the oth-

erwise excellent review article by Rogallo and Moin [10] no discussion of the

criteria for the selection of desireable values of A is given. The implica-

tion fran this situation might be that the filter scale is taken to be as

snall as possible within the available cnputing capabilities. Clearly the

snaller the value of A the smaller the reliance on the suborid modelirq and
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the more nearly the LES corresponds to a direct numerical simulation.

The followirr considerations may be suggestive: Define u ' as a measure

of the turbulent velocity fluctuations in the region of the flow with the

highest turbulence Reynolds number and L as the measure of the global length

scale of the flow. Then turbulence theory indicates that

U.1 L Ul 4

where lK is the Iolmogoroff length. Now the maximum dissipation occurs at

length scales roughly a decade larger than 1K so that it is convenient to take

= c 1K where c is on the order of 10 - 102, the smaller values implying less

reliance on the subgrid modeling. Accordingly, it is easy to show that

1 ' /4(7

For c( = 10 this relation yields for u' L ,' of 103 and 104 values of L,/L of 18

and 100 respectively. These values are consistent with present day computing

capabilites and with current LES calolations. For example, Deardorff [5] used

an ungraded mesh of 2gx24x14 points. The implication of Eq. (27) is that

graded meshes and adaptive griding may be effective in minimizing the errors

due to subgrid closures for a given number of points. These values indicate

the need for significant grading of qrid size so as to concentrate points in

regions of high turbulence Reynolds numbers and possibly for adaptive griding.
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INTRODUCTION

Unsteady three-dimensional structures in detonation waves had been observed for

some time before Shchelkin i made the first theoretical effort to relate this behavior to

the instability of one-dimensional detonations. Many studies of the stability of deto-

nations followed. Of these, Erpenbeck 2 - 4 presented a formal mathematical analysis

that showed that one-dimensional detonations are unstable to both longitudinal and

transverse perturbations. Barthel and Strehlows showed that high-frequency acoustic

waves behind the detonation front can produce multiple shock fronts. Abouseif and

Toong6 attributed the instability of the detonation front to the interaction between

the irreversible temperature fluctuations produced by the shock and the finite reaction

zone. All of these studies used a global one-step chemical reaction model. They all

concluded that detonations become more stable as iwhe degree of overdrive increases and

the activation energy decreases. When the detonation is-unstable, the one-dimensional

structure evolves into a dynamically stable configuration: a repeatable multidimen-

sional unsteady structure, that conforms to the geometry of the boundaries.

However, the multidimensional structure of the detonation wave is not always

stable. The regularity of the cellular structures produced is usually poor, changing size

from one cell to the next. The problem of irregularity has been discussed as early as 1968

by Strehlow7 . Yet there have been no rigorous attempts to explain why detonations

produce regular cellular structures in some materials and irregular in others. Attempts

to relate trends in cellular regularity to the activation energy and to the sensitivity

of induction time to variations in Mach number are not definitive, because they make

comparisons between mixtures with different specific heats and different sound speeds8 .

Nevertheless, they conclude that regularity improves as the activation energy decreases

and when the induction time is less sensitive to variations in Mach number.

In a recent paper9 , we used two-dimensional time-dependent simulations to study

the effect of induction time parameters on the regularity of the cellular structure in

liquid nitromethane. The chemical decomposition of nitromethane was described by

a two-step model composed of an induction time followed by energy release. The



experimentally determined expression for the induction time isW° r' = A? exp(E'/RT),

where A? = 2.3 x 10- js and E? = 29.1 Kcal. The expression we used for the energy

release time was"1 r,* = A* exp(E,0/RT), where A = 2.5x 10- As and E, = 53.6 Kcal.

When these values of io and Tr were used in the numerical simulations, they

produced a cellular structure with poor regularity. Figure la, reproduced from Guirguis

et al.9 , shows the resulting structure for a tube 0.05 mm wide. We then did a parametric

study in which we varied A? and Ej' such that the Arrhenius line, log r" vs 1/T, was

rotated about 2700 K. This is the temperature behind the one-dimensional detonation.

It was chosen in order to keep the same detonation cell size. This is in analogy to gas

phase detonations in which a correlation was found to exist between the cell size and

the width of the induction zone behind the one-dimensional detonation. The expression

for ro was not changed throughout the calculations.

The results of these studies showed that increasing the slope of the Arrhenius

line produced more regular structures. However, it also produced large pockets of

unreacted material. The calculations showed that there is a correlation between the

change in induction zone thickness across the transverse waves and the regularity. The

larger the change, the more regular the cellular pattern. The calculations also showed

that regularity is improved when the the curvature of the shock front increases. The

regular structure shown in Fig. lb was obtained by increasing by 50% the slope of

the Arrhenius line, yielding r' = 1.55 x 10- 7 exp(43,650/RT) As. It is not nearly as

repeatable, however, as those patterns observed and calculated for H2-0 2 mixtures

highly diluted in argon1 2 .

In this paper, we study the effect of the rate of energy release and its dependence

on temperature on the regularity of the cellular structure of detonations in liquid ni-

tromethane. Here, we do not vary the expression for the induction time, but we change

the energy release rate. The other input parameters in the calculations are kept con-

stant.

PHYSICAL MODEL

The model we use has been discussed in detail by Guirguis et al.9  We solve

2



the Euler equations for compressible flow in two dimensions. The walls are assumed

to heavily confine the liquid explosive and boundary layer effects are neglected. The

solution thus simulates the detonation structure near the center of a wide channel.

The transformation of liquid fuel to gaseous products is described by a two-step model.

Step 1 is an energy-neutral step, the rate of which is expressed in terms of an induction

time, ri*(T). Step 2 starts only after this induction time is elapsed. If f denotes the

fraction of induction time elapsed at time t, and t denotes the fraction of fuel mass in

a mixture of fuel and products, d(fw) _t

0 '", (1)

dt 'i

where f (0) = 0, and
dw 0 if < (2)"- -W_ if f> 1!i.(2

The HOM equations of state, described by Mader1 1 , are used for both condensed

fuel and gaseous products. The equation of state for the condensed phase is based on

the method of Christian and Walsh 1 3 . The equation of state of the gaseous products is

constructed using the BKW equation of state for the final products. In those regions

which contain a mixture of phases, pressure and temperature equilibrium are assumed.

TEMPERATURE DEPENDENCE OF THE ENERGY RELEASE RATE

The different stages of reaction of a system initially at temperature T. are illus-

trated in Fig. 2. At the end of the induction time, r', the temperature increases as

energy release begins. As the fuel is consumed, the increase in temperature causes an

increase in the rate of energy release. Meanwhile, w decreases, causing a decrease in

the rate of energy release. These two competing effects produce the inflection point

on the curve, where the rate of energy release reaches a maximum. The time it takes

to reach this maximum can be interpreted as an effective induction time, ri. If fuel

consumption proceeds at a constant rate independent of w and equal to the rate at

the initial temperature, T., the reaction follows the dashed line in Fig. 2. The time

required to consume the fuel is then r,*.

3



In all the calculations presented below, r°* = 4.57 x 10- 7 exp(37,830/RT) Ms. This

is the expression that gave the most regular structure in our previous study9 . Figure 3

summarizes the various energy release functions, rT, we have studied. The line (0)

corresponds to -ri = 2.5 x 10- g exp(53,600/RT) jis, the expression for the energy

release time taken from Mader11 and used throughout our previous study. At 2700 K,

the energy release time, rf , is only about one tenth of the induction time, r*. When rT°

is represented by any of the dashed lines, (2), (5), or (6), the rate of fuel consumption is

constant, independent of temperature and mass of fuel. In this case, the energy release

process is described by the dashed curve in Fig. 2.

NUMERICAL SOLUTION

The details of the method of numerical solution have been described extensively

by Guirguis et al.9 The procedure is based on timestep splitting the fluid dynamics

and the chemical terms14 . The fluid dynamics is advanced using a fourth-order Flux-

Corrected Transport (FCT) algorithm"'. This algorithm introduces a minimal amount

of numerical diffusion, thus allowing acoustic perturbations to grow naturally if the

system is unstable to the wavelengths present. The smallest acoustic wavelength that

can develop is limited, however, by the grid spacing. Because transverse waves develop

whenever acoustic perturbations of wavelength smaller than the size of the reaction

zone are introduced5 , the computational grid is designed to have at all times at least

five grid points within the induction zone.

To estimate the resolution required, one-dimensional calculations were used as a

guide. Such calculations showed that for a one-dimensional detonation, the induction

zone is 2 x 10- 4 cm wide. In our two-dimensional z - y domain, we use 200 x 125

computational cells, initially with a uniform spacing of 4 x 10- 5 cm, representing a

channel 0.05 mm wide. The grid in the y-direction is kept fixed. The right boundary of

the grid extends with the wave front along the z-direction, such that the grid spacing

around the shock and reaction zones is always a uniform 4 x 10- 6 cm. The timestep is

limited to 1/4 the Courant condition, giving an average timestep of 0.8 x 10 - ps.

4



RESULTS

The calculations were performed in a two-dimensional domain 0.05 mm wide rep-

resenting a channel closed at one end. They were initialized with a one-dimensional

overdriven detonation which decays as it propagates. Before the detonation reaches

Chapman-Jouguet conditions, energy is deposited into a rectangular pocket centered

on the axis behind the shock front. When the shock wave generated from the expanding

pocket interacts with the detonation front, two transverse waves are formed. After a

few collisions with the channel walls, the transverse waves establish the detonation front

structure' ,16 . Both the energy deposited in the system to initiate the one-dimensional

detonation and the energy deposited in the pocket to produce the first transverse waves

are the same in all of the calculations.

We first considered the "square-wave" case in which the energy is released instanta-

neously at the end of the induction period. In this calculation, although two transverse

waves formed as a result of the interaction between the detonation front and the shock

wave generated from the pocket, the detonation front became one-dimensional early

in the calculation. Erpenbeck, 17 Fickett,15 and Abouseif and Toong6 used pertur-

bation analysis to study the stability of the square-wave detonation. Erpenbeck and

Fickett concluded that such a model results in an infinite set of unstable modes, with

amplification rates increasing with frequency. Abouseif and Toong, on the other hand,

concluded that the degree of instability is reduced rapidly as the frequency is increased,

so that the one-dimensional detonation is stable at high frequencies. The results of our

numerical study support the conclusion of Abouseif and Toong.

We then investiaged the effects of decreasing the activation energy, E, , using

line (0) in Fig. -0 as the base case. Lines (1) and (2) have the same value for the energy

release time at 2700 K, r! = 5 x 10- 5 As, as line (0), but different activation energies.

For line (1), E ° = 26.8 Kcal. Line (2) corresponds to a constant rate of energy release,

EO =0.

Figure 4 compares the pressure and temperature contours resulting from using

lines (0), (1), and (2). A heavy concentration of pressure contours occurs at both shock

5



and reaction fronts. The reaction front is particularly well defined on the temperature

contours. When the temperature behind the shock front is below the selected minimum

contour level, the shock front does not show on the temperature contours. This appears

in the figures as gaps ahead of the reaction front. The region confined between the shock

and reaction front is the induction zone. At a triple point, there is a change in induction

zone thickness and a slip line originates.

We notice several trends as we decrease the activation energy. First, as the ac-

tivation energy is reduced from 53.6 to 26.8 Kcal, going from line (0) to line (1), the

change in induction zone thickness at the triple points increases. Larger unreacted

pockets form. The detonation front becomes more curved and the detonation structure

becomes more regular.

Now we reduce the activation energy to zero, in which case r* becomes independent

of temperature, corresponding to line (2). The front is nearly one-dimensional and very

little change is noticed in the size of the induction zone at the triple points. Of the

three cases, line (1) leads to the most regular cellular structure.

We have also investigated the effect of changing the magnitude of the energy release

rate by repeating the calculations using energy release times five times shorter and five

times longer. These are shown in Fig. 3 as lines (3) and (4), respectively. For the

shorter energy release times, there is less change in induction zone thickness at the

triple points as shown in Fig. 5. At step 3000, a new triple point starts forming at the

lower wall. This new triple point disappears in steps 3200 and 3400, but its temporary

formation demonstrates a decline in the cell structure regularity.

The longer energy release times, line (4) in Fig. 3, caused large changes in the size

of the induction zone at the triple points. The result is that very large pockets formed.

The front was highly curved. At later stages, the large pockets of unreacted material

caused the detonation to weaken to the point where the shock front decoupled from

the reaction zone, and the detonation wave eventually died out.

For line (4) in Fig. 3, r,* is longer than ri* at temperatures lower than 2175 K. The

resulting detonation wave died out. To investigate the effect of the relative magnitude

6



of induction and energy release times, we repeated the calculations for two temperature-

independent energy release rates, described by lines (5) and (6). For line (5), 7-' is half

the induction time at 2700 K. Reducing the activation energy to zero, going from line (4)

to (5) showed the same trend described above. The change in the width of the induction

zone across the transverse waves was slightly reduced. Smaller unreacted pockets were

formed. The shock front was slightly less curved. Although these conditions are usually

associated with a less regular structure, the smaller pockets did not cause the detonation

wave to die out.

The pressure and temperature contours of the detonation wave corresponding to

line (5) are shown in Fig. 6. These contours indicate a wider induction zone and a

more curved shock front than those in Fig. 4. The pressure contours at steps 2000

and 2800 are similar except for an upward or downward displacement equal to half the

width of the channel, showing that the detonation wave has gone through one half of

a cell length. At step 2800, the two tansverse waves are about to interact near the

center of the channel. The interaction produces a new Mach stem and a region of high

temperature behind it. Due to the corresponding decrease in induction time, a new

reaction front is initiated near the center that isolates the pocket of unreacted material

shown by the temperature contours at step 3000. Other possible explanations for the

formation of unreacted pockets were given by Oran et al. 19

Finally, for line (6), the energy release time is longer than the induction time at

all temperatures higher than 2700 K. Again, large unreacted pockets formed that led

the reaction front to eventually decouple from the leading shock, and the detonation

to die out.

DISCUSSION AND CONCLUSIONS

In this paper, we have presented the results of time-dependent two-dimensional

numerical studies of the effect of the rate of energy release on the regularity of the

detonation cell structure in liquid nitromethane. In a previous work", we investigated

the effect of the induction time on the regularity of the detonation structure. In the

work presented in this paper, the same expression describes the induction time for all

7



calculations, but we vary the rate of energy release.

The regularity of the detonation cells is generally classified as excellent, good,

poor, or irregular, depending on the uniformity of the pattern inscribed by the triple

points20 2 1. In terms of this classification, the structures we see in our calculations

showed either good or poor regularity. When the curvature of the shock was well

defined throughout the front and changed only at the two triple points, and when the

detonation structure was reasonably symmetrical and repeatable from cell to cell, we

call the regularity good. This was the case for the calculations shown in Fig. 4a using

lines (0) and (1), and for those in Fig. 6 using line (5). Weakly curved fronts, on the

other hand, showed local changes in curvature that were of the same size or even larger

than the change at the two main triple points. This is the case for the calculations in

Fig. 4 which used line (2), and in Fig. 5 which used line (3). We call the regularity of

these structures poor.

In the calculations presented above, the detonation wave either died out, became

one-dimensional, or inscribed a generally regular cellular structure. We conclude that

the rate of energy release controls whether the detonation wave stays one-dimensional

or becomes multidimensional. But when the detonation is multidimensional, the reg-

ularity of the cellular structure is controlled mainly by the temperature dependence

of the induction time. The rate of energy release can affect the regularity, but to a

lesser extent. Longer energy release times produce more regular structures. However,

if the energy release times become too long, the detonation dies out. Decreasing the

activation energy also leads to more regular structures. But reducing it below a certain

value makes the structure less regular again.

One way in which changes in the activation energy can affect the regularity is

by changing the effective induction time ri, defined in Fig. 2. To investigate this, we

solved Eq. (2) for a constant volume system for which r4 = 0, using two activation

energies, 50 and 25 Kcal. We found that for temperatures larger than about 2600 K,

the slope of log ri vs 1/T for 25 Kcal is larger than the slope of the corresponding curve

for 50 Kcal. For temperatures less than 2600 K, 50 Kcal produces larger slopes. The

8



crossover temperature, 2600 K, at which the two slopes are equal, depends on the values

of the two activation energies. We have shown9 that increasing the slope of log rj' vs

1/T produces more regular structures. Thus, reducing the activation energy up to a

limit improves the regularity. If the activation energy is further reduced, the crossover

temperature becomes so high that the slope of the effective induction time is lower

throughout the whole range of temperatures behind the shock front of the detonation

wave. The cellular structure then becomes less regular.

When the energy release time is much shorter than the induction time, changes in

the rate of energy release can affect the regularity of the cell structure. However, when

the energy release and induction times are comparable, the effective induction time,

ri, becomes significantly different from the steady induction time, ,A'. In this case, the

detonation cell size significantly deviates from its nominal value and the slow energy

release can even cause the detonation to die out.

The results of the calculations are consistent with the conclusions of our study

of the effect of induction time on regularity9 . The stability of the multidimensional

detonation depends on the difference between the thermodynamic properties of the

induction zones behind the Mach stem and the incident shock sections of the front. If

these two zones are not ve.y distinct, small disturbances affect the system and irregular

structures result. The difference between the thermodynamic properties of these two

zones can be increased by increasing the temperature dependence of the induction time,

increasing the energy release time, or decreasing the activation energy. Each of these

changes, or any combinations of them, yields a more curved shock front. The triple

points are then sharply defined at all times, and the structure becomes more regular.

However, as the difference between the propei Lies of the two zones is increased, large

unreacted pockets form. These cause a deficit in the energy released behind the shock

front, which is the energy that supports the detonation wave. If this deficit becomes too

large, the reaction front decouples from the shock and the detonation wave eventually

dies out.
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FIGURE CAPTIONS

Fig. 1. Pressure contours of a detonation wave propagating in a channel 0.05 mm wide.

Solid traces are loci of main triple points (points at which shock front sharply

changes curvature). Dashed traces are loci of secondary triple points (minor change

in front curvature, recognized by associated transverse waves). Collection of solid

and dashed traces define a cellular structure with (a) poor regularity, and (b) good

regularity.

Fig. 2. Time evolution of temperature for a typical chemical reaction. Dashed line

corresponds to a case in which the rate of energy release is constant.

Fig. 3. Energy release functions, rO vs 1/T, used in the numerical simulations. Dashed

lines represent constant energy release rates.

Fig. 4 Pressure (a) and temperature (b) contours from simulations using lines (0), (1),

and (2) in Fig. 3, for a channel 0.05 mm wide.

Fig. 5. Pressure contours from simulations using line (3) in Fig. 3, for a channel 0.05

mm wide.

Fig. 6. Pressure and temperature contours from simulations using line (5) in Fig. 3,

for a channel 0.05 mm wide.
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A Barely Implicit Correction for Flux-Corrected Transport
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The barely implicit correction (BIC) removes the stringent limit on the timestep imposed by
the sound speed in explicit methods. This is done by adding one elliptic equation which has to
be solved implicitly. BIC is combined with the flux-corrected transport algorithm in order to
represent sharp gradients in subsonic flows accurately. The resultant conservative algorithm
costs about the same per timestep as a single explicit timestep calculated using an optimized
FCT module. Several examples show the technique's ability to solve nearly incompressible
flows very economically. 0 1987 ACMdmi PrM& Inc.

1. INTRODUCTION

The solution of time-dependent compressible flow problems is complicated by
conflicting requirements of mathematical accuracy, nonlinearity, physical conser-
vation, and positivity. This is especially true near discontinuities where "accurate"
high-order algorithms produce ripples while linear monotonic (i.e., positivity-
preserving) schemes are highly diffusive. After Godunov [1] showed that a linear
algorithm ensures positivity only if it is first order, the next logical step was to look
at nonlinear methods to develop effectively higher order, more accurate monotonic
schemes. The first high-order monotone algorithm (Boris [2]) was designed to
maintain local positivity near steep gradients while keeping a high order of
accuracy elsewhere. The major principles of the monotone high-order algorithms
are that they maintain positivity through a procedure that uses a nonlinear com-
bination of diffusive and antidiffusive fluxes. The flux-corrected transport (FCT)
algorithm that we use in this paper [3, 4] is made fourth order by the appropriate
subtraction of corrected fluxes. Other monotone methods have been reviewed by
Woodward and Collela [5] and Baer [6]. In this paper we confine our discussions
to a barely implicit correction (BIC) to FCT. BIC is also extendable to other
monotone methods.

Positivity-preserving monotone FCT methods were developed to calculate shocks
accurately. Even for subsonic flows with discontinuities, their high accuracy
produced much better solutions than standard finite difference techniques. The early
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2 PATNAIK ET AL.

FCT methods were explicit. No serious limitation arose from this explicitness in
supersonic flows because the major features of interest in the flow move at about
the sound speed. Using these methods for subsonic flows, however, is economical
only if the characteristic velocities in the flow field are a reasonable fraction of the
speed of sound [7, 8] or if the fast sound waves are mathematically removed from
the system of equations.

The barely implicit correction described in this paper was motivated by the need
to calculate subsonic flows accurately in which the velocities of the important flow
structures are much lower than the speed of sound. In typical cases, we are
interested in flow velocities from centimeters to tens of meters per second. These
flow velocities are encountered, for example, in laminar flames and low-speed fuel
injection in engines. Our objectives are to remove the timestep limit imposed by the
speed of sound, retain the accuracy required to resolve the detailed features of the
flow, arid reduce the computational costs.

The obvious way to beat the sound-speed limit on the timestep is to make the
calculation implicit. This has been done successfully for many linear methods, such
as the MacCormack method [9], the Beam and Warming method [10], and the
semi-implicit ICE method [11-13]. In addition, recent developments have been
reported for implicit, nonlinear PPM [14] and TVD [15] methods. A major
problem with these methods is that they are relatively expensive, even though they
can be made relatively accurate.

Another approach is the asymptotic methods. Examples of these are the methods
developed by Jones and Boris [16], Rehm and Baum [17], and Paolucci [18]. In
these methods, the only effects of compression that are allowed are the changes in
density due to heating or cooling. Pressure fluctuations are filtered out, thus remov-
ing the timestep limit imposed by the sound speed. However, other effects from
sound waves are removed in this process.

As a useful approach was given by Casulli and Greenspan [19]. Their analysis
indicated that it is not necessary to treat all of the terms in the gas dynamic
equations implicitly to be able to use longer timesteps than those dictated by
explicit stability limits. Only those explicit terms which force this limit need to be
treated implicitly. This approach results in a single elliptic equation for pressure.
Because of the choice of terms, the algorithm produced is stable. Note that the ICE
method also results in a single elliptic equation. However, the elliptic equation in
ICE is different, and does not completely eliminate the sound-speed restriction.

The conservative algorithm presented in this paper has two steps. The first step is
explicit. It is performed at a large timestep governed by a CFL condition on the
fluid velocity. This step should be done with an accurate nonlinear monotone
method, and we have used FCT in the examples given. The second step is an
implicit correction step requiring the solution of one elliptic equation for the
pressure correction. The term barely implicit correction emphasizes our use of the
idea of Casulli and Greenspan, that only certain terms must be treated implicitly.

The total cost per timestep of BIC-FCT is about the same as for a full explicit
FCT step. Thus the cost of a complete calculation is one or two orders of
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magnitude below that required if a very slow flow were treated explicitly. Since only
one elliptic equation is solved, the method is considerably faster than many implicit
methods commonly used. In addition, using a nonlinear monotone method for the
explicit step ensures high accuracy.

II. METHOD OF SOLUTION

Derivation of the Barely Implicit Correction

We are solving the compressible gas dynamics conservation equations for density
p, momentum density pv, and total internal energy, E,

a=-V.pv, (1)

at=_V.pvv-VP, (2)
atV

aE
_= _-V- (E+ P) v, (3)t

where the total energy density E is

E= + p 2 . (4)

The equation of state relating pressure and internal energy is

P= (Y-1) E. (5)

In their recent paper, Casulli and Greenspan [19] showed that it is not necessary
to treat every term in a finite-difference algorithm implicitly to avoid the timestep
constraint imposed by the Courant condition. Further, they showed that only the
pressure in Eq. (2) and the velocity in Eq. (3) must be treated implicitly. Their
paper provides the starting concepts for the work we present. In addition, we have
extended their analysis to include an implicitness parameter, to, that can be used to
vary the degree of implicitness of the algorithm. In general, we can have 0.5 < to < 1,
where the implicit terms are centered in time for w = 0.5. For co < 0.5, the method is
found to be unstable for sufficiently large timesteps.

There are two stages to the algorithm. One stage is an explicit predictor that
determines ,5 and the provisional value V,

PAP* = -V.P OIV, (6)

At = V - pv 0v0 -VP", (7)At
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The tilde denotes predictor values at the new time, and the superscripts o and n are
used to denote the old time and new time, respectively. So far only time has been
differenced, not space. The implicit forms of Eqs. (2) and (3) are

P V PV = -V- p~vv° - V[oP+( - ) p], (8)

At

E"_Eo
A =-V.(E PO)joLvn + (1 - co) v], (9)

where co is the implicitness parameter discussed above. When o = 1, the algorithm
is completely implicit and reverts to the original equations analyzed by Casulli and
Greenspan.

We can reduce this implicit system to only one equation by eliminating v"
between Eq. (8) and (9). To do this, we first define the change in pressure, 6P, as

bP -- Wo(P' - P°). (10)

Then the correction equation for momentum can be obtained in terms of SP by
subtracting Eq. (7) from Eq. (8),

S -VO(P - P)= -V6P. ( )

We obtain the new velocity by rearranging Eq. (11) and letting p0 = because
the density is treated explicitly. Then

At
v= -- VP + . (12)P

We obtain a correction equation for energy using the equation of state with y con-
stant, Eq. (4),

6P
n= + to, (13)

where the co factor appears from the definition of 6P. We find 6P by substituting
Eqs. (12) and (13) into Eq. (9),

2 _ oo2 61EO + PO2p r p1) Wt =WtA - V6P

-t +- (EO +P)) 4

-(l- )V (EP+ P'). (14)
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Note that the kinetic energy change is included explicitly. For convenience, we
define the quantity R,

-V- (E+ PO)[( I+( -o)v]. (15)
At

This allows us to rewrite Eq. (14),

6P (c'IE" + P°0  E - E 2_ Povo2 (

(y-l)CoAt tV At 2At (16)

which provides us with an elliptic equation for 6P. The right-hand side of Eq. (16)
is evaluated explicitly using Eq. (15). After the elliptic equation is solved for 6P,
momentum and energy are corrected by Eqs. (11) and (13). Note that we started
with two equations with implicit terms, and now we have reduced it to one
equation, Eq. (16).

The barely implicit correction is carried out in three stages. In the first, Eqs. (6),
(7), and (15) are integrated with any one-step explicit method. The pressure correc-
tion equation, Eq. (16) is solved by an elliptic solver in the second stage. The last
stage requires the use of Eqs. (11) and (13) to obtain the final values of momentum
and energy at the new timestep.

Solution Procedure

The derivation given above does not involve any specific choice of method for
differencing the spatial derivatives. The only restriction so far is that the spatial
derivatives must be evaluated at the appropriate time levels indicated by the
superscripts. This allows great flexibility in the choice of the differencing scheme for
these terms. Thus we can integrate the explicit predictor equations, Eqs. (6), (7),
and (15) with FCT. This gives us the benefits of using a high-order monotone
method. We have given the name BIC-FCT to this particular combination of BIC
and FCT. Tests, such as those presented below, indicate that it has the same
accuracy and flexibility as FCT.

At each timestep, the solution procedure we have implemented is divided into the
three states:

(1) Explicit predictor stage. The density and momentum are advanced
explicitly as specified by Eqs. (6) and (7) using FCT. This produces the inter-
mediate quantities, A and Ai. The V is found from AV/P. Then f is used to obtain F
given by Eq. (15). FCT is also used to obtain E.

(2) Solution of Eq. (16) for 6P. In one dimension, the solution to the dif-
ference form of Eq. (16) requires the solution of a system of linear equations by a
tridiagonal matrix solver. In two dimensions, the solution requires an elliptic solver.
For the two-dimensional calculations shown below, we used a multigrid method
[20]. A substantial part of the computer time required in this stage is in setting up
the coefficients for an elliptic equation solver.
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(3). Momentum and energy corrections. These corrections are obtained from
the pressure change 6P using Eqs. (11) and (13), respectively. These corrected
values and the density obtained explicitly in the first stage are the starting con-
ditions at the new timestep.

These three stages are carried out at every timestep. The derivatives involving
pressure in the pressure difference equation, Eq. (16), are approximated by central
differences. All physical quantities are calculated at cell centers, and those values
needed at cell interfaces are obtained by averaging.

This technique can be implemented in one, two, or three dimensions. In one and
two dimensions, several different geometries are possible. For example, we have
implemented two-dimensional planar and axisymmetric geometries, and one-dimen-
sional Cartesian, cylindrical, and spherical. Any boundary conditions that are com-
monly used with the standard FCT modules can be used with this algorithm [7].

Boundary conditions for the elliptic pressure correction equation are needed.
Symmetry or- outflow boundaries can be simulated by a Neumann condition on the
pressure correction. At an inflow, the pressure is related to the internal energy by
the equation of state. Thus the boundary condition for the pressure correction can
be derived from the boundary condition on energy. If the internal energy is fixed at
a boundary, the pressure there is a constant and thus 6P is zero.

III. TEsTs oF THE METHOD

Advection of a One-Dimensional Contact Discontinuity

The problem we consider first is the flow of air through a duct in one dimension.
The duct is initially filled with air at standard temperature and pressure. Then cold
air with twice the density flows into the duct. There is a contact discontinuity at the
location where the cold, dense air and normal air meet. In the absence of diffusive
processes, the contact discontinuity should move at the velocity of the incoming air.
This numerical test shows the ability of BIC-FCT to propagate a contact discon-
tinuity with the same accuracy as FCT.

The computational domain was divided into 200 evenly spaced cells of I cm.
Initially, the discontinuity was 0.1 m from the inlet. The flow velocity of air in the
duct was 10 m/s. The inlet conditions corresponding to the cold air are held fixed
throughout the calculation.

The timestep used in this calculation is 0.5 ms, which is the time required for the
fluid to cross half a cell. This should be compared to the Courant limit of 24 js.
Typical explicit methods are forced to employ a timestep of less than half of the
Courant limit to control the growth of perturbations in pressure and velocity. In
this example, a factor of forty to fifty is gained over the explicit timestep.

Figure 1 shows the density profiles at intervals of 50 steps. The discontinuity,
initially across one cell, spreads to three or four cells as it moves across the system.
Most important, however, is that the discontinuity spreads no further throughout
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the course of the solution and there are no ripples in the solutions. Both of these
features are in the underlying explicit FCT algorithm. The results presented in the
figure were obtained with co = 1. The influence of sound waves in this problem are
negligible, so that any stable value of co gives the same result.

Sound Wave Damping

Sound waves, especially high-frequency sound waves, are attenuated by most
finite-difference methods. Implicit methods, however, tend to damp all frequencies,
with the lower frequencies damped least. The problem we now present tests the
sound-wave damping in BIC-FCr.

We consider a closed, one-dimensional pipe I m long in which the fluid velocity
was initialized with a sinusoidal variation. The maximum amplitude of the variation
was 1 m/s at the center of the pipe. Effectively, the initial conditions correspond to a
sound wave in the pipe with a wavelength of 2 m.

Each curve in Fig. 2 shows the fluid velocity at the center of the pipe as a
function of the number of cycles for a different value of c. The damping is greatest
when c = 1, which is when the method is completely implicit. The damping
decreases as c is reduced, and it becomes negligible when c =0.5. Any further
reduction in co leads to instability of the numerical method. We conclude that the
amount of damping is a strong function of implicitness parameter. The results
shown in Fig. 2 were for a sound wave with a cell size of 2.5 cm using a timestep of
0.1 Ms.

The dispersion relation, obtained directly from the calculations, is shown in
Fig. 3a for CFL = 0.5. The CFL number is defined as

CFL = sound speed x time step
cell size

These calculations were made by varying the timestep as well as the number of cells
in the I m pipe. The product of the wave number, k, and the cell size ,Jx is inversely
related to the accuracy of representation of the wave. The number of cells per
wavelength is given by

2xN = k--x.

On the vertical axis, we show Od and co, the observed and theoretical frequencies
of the wave. A totally dispersion free algorithm, in which cod = co,, would yield the
45* line shown. Curves for different values of the implicitness parameter are presen-

ted. For comparison purposes, the results for the explicit, predictor-corrector
JPBFCT method [4] are included. JPBFCT requires two applications of the FCT
algorithm at each timestep. This two-step process makes JPBFCT second order in F

time. (b),
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Figure 3b indicates the change in amplitude of the wave in one period. The
amplification is always less than unity, indicating that the wave is damped. If the
amplification were greater than unity, the calculation would be unstable. As expec-
ted, damping increases when the method is more implicit. Poorly resolved
wavelengths are damped, even by the fully explicit, time-centered, JPBFCT method.
It should be noted that BIC-FCT with co = 0.55 performs nearly as well as the
explicit JBPFCT. Values of w nearer 0.5 brings results of the two methods even
closer.

Figures 4a, b, and 5a, b give the dispersion relation and damping for CFL = 2
and CFL 10, respectively. Representation of the sound wave deteriorates more
rapidly as resolution is lost for these CFLs. Curves for CFL = 10 are shorter than
those for lower CFL because the timestep becomes too large to resolve the
oscillatory nature of the wave.

This example points out the need for caution when attempting to resolve sound
waves at high CFLs. Poorly resolved wavelengths are strongly damped and cannot
be adequately represented. However, if only long wavelengths are of interest,
BIC-FCT can provide a substantial gain over an explicit method.

A Two-Dimensional Problem

When BIC-FCT is applied in two dimensions, the same basic three-step
procedure is used. In addition, we use time splitting in the two spatial dimensions
to implement the explicit FCT predictor step. However, for the method to work,
the elliptic pressure change equation must be solved in two dimensions.

The solution of the elliptic pressure change equation is a substantial part of the
computional effort at each timestep. In one dimension, the finite-difference form of
the pressure difference equation can be solved efficiently in O(N) operations, where
N is the number of grid points, using standard tridiagonal methods (e.g., see
Roache [21 ]). In two dimensions, it is important to have an efficient elliptic solver,
and preferably one that is not limited to specific types of problems with specific
boundary conditions. In the calculation presented below we use a multigrid
method, MGRID [20], which is very fast and requires O(N log N) operations. This
method is suitable for the parallel processing in pipelined, parallel, and vector com-
puters. It is straightforward to use any other suitable elliptic solver.

The two-dimensional Cartesian test problem was selected to demonstrate the
ability of BIC-FCT to treat nearly incompressible swirling flows. Calculating this
type of flow is difficult for most Eulerian methods, and thus it provides a very
stringent test of our method. A potential vortex with a central core was used as an
initial condition in a square 10 m x 10 m region. The initial conditions correspond
to the analytic solution of a line vortex with diffusion which is of the form [22

Vta.ge..ia. =c [Il - e-m ,]
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where c and v are constants. The flow very rapidly adjusts to the presence of the
walls, but this does not affect the flow close to the vortex center. In this test, a
stretched 40 x 40 grid was used with the smallest cells 10 cm in size placed at the
center of the vortex. The maximum velocity, at the start of the calculation, was
30 m/s. A conservative timestep of I ms was used. This should be contrasted to the
60 to 120 us timesteps required for stability in a fully explicit method. In this nearly
steady-state problem, the effects of pressure fluctuations are expected to be
negligible. Therefore, we could use co = 1, the fully implicit method.

For flow visualization purposes, the lower half of the fluid has been marked and
appears as the dark area in Fig. 6. In the absence of diffusion processes, either
physical or numerical, this interface remains sharp as the fluid rotates at a constant
velocity. Figures 7 and 8 show the position of the interface after 50 and 200
timesteps, respectively. The interface between the marked and unmarked fluid is no
longer sharp, due to numerical diffusion. The interface remains fairly sharp outside
the core region.

The velocity decay is given in a more quantitative manner by the scatter plots
shown in the next set of figures. Tangential and radial components of velocity are
plotted as a function of distance from the vortex center. Crosses denote the velocity
at each grid point actually obtained from the program and the solid line provides a
least squares fit of the data to the form of the analytic solution of the vortex with
diffusion [22]. The initial condition is shown in Figs. 9a and b. Figures 10a, b, and
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FIG. 8. Flow visualization of two-dimensional vortex flow, 200th step.
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TABLE I

Timings9 per Step of BIC-FCT and JPBFCT

20 x 20 40 x 40 80 x 80

BIC-FCT
Explicit 6.8 ms 17.0 ms 54.1 ms
Elliptic 3.8 8.4 22.5
Other 2.7 5.9 17.1
Total 13.3 31.3 93.7
Per point 33.3 ps 19.6 pS 14.6 pa

JPBFCT 13.6 ms 33.9 ms 108.1 ms
Per point 34.0jus 21.2 .us 16 .9 ps

,'On CRAY XMP-12.

1 la, b show the velocity after 50 and 200 timesteps, respectively. The peak tangen-
tial velocity decreases due to numerical diffusion. However, the effective diffusion
coefficient is not a constant either in space or time which leads to an imperfect fit of
the data to the analytic solution. Scatter in the tangential velocity at the same
location is due to the nonuniform retardation caused by varying amounts of
numerical diffusion. Since the flow is essentially incompressible, nonzero radial
velocities are generated.

We now examine the time it takes to do one computational timestep. Table I
shows a timing comparison between BIC-FCT and the standard module, JPBFCT,
very similar to that described by Boris [4]. In fact, the explicit FCT predictor in
BIC-FCT is similar to the corrector step of JPBFCT. The table shows that the
computational time required per timestep compares extremely favorable to that for
the explicit method, especially at the larger grid sizes.

IV. SUMMARY AND DISCUSSION

In this paper we have described the barely implicit correction method (BIC) for
calculating subsonic flows. As pointed out by Casulli and Greenspan, only the
pressure and velocity terms in the momentum and energy equations, respectively,
have to be treated implicitly. This is sufficient to remove the sound-speed limit on
the timestep. We then manipulated the equations to yield a single implicit equation,
which is solved for a correction to an explicit predictor step. BIC can be used with
any spatial differencing scheme. BIC-FCT provides the accuracy of the high-order
monotone flux-corrected transport method but allows the large timesteps possible
with an implicit method.

A number of test problems showed that BIC-FCT maintains the desirable high-
order monotone characteristics of the explicit FCT algorithm. First, we showed that
it could propagate a contact discontinuity as well as the two-step JPBFCT. We also
presented a two-dimensional example of a swirling flow.
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The implicitness parameter, w, plays an important role in BIC-FCT whenever
sound waves and pressure oscillations are important in the solution. Damping is
negligible for long wavelengths and timesteps when ( = 0.5. When sound waves are
not important, o can be set to unity.

The major gain is that the timestep is no longer restricted by the sound speed.
This improvement is achieved at little or no additional cost per timestep. The cost
of solving the elliptic equation is recovered by, the elimination of the half-step
calculations in explicit FCT.

In two-dimensional problems, an efficient method of solution of the elliptic
pressure equation is essential. The multigrid technique MGRID used here is among
the fastest. However, the application of this technique to even modestly complicated
geometries is not straightforward. Unstructured multigrid methods £23] should
provide the necessary flexibility.

Equations (6), (8), (9), and (16) are in conservative form. FCT has been shown
to be conservative and Eq. (16), the pressure correction equation, is differenced in a
conservative manner. Thus BIC-FCT is a conservative scheme. Since the pressure
correction only appears as a gradient in the velocity correction, vorticity generation
and transport are unchanged by BIC. Thus vorticity also stays a local, convected
quantity.

BIC-FCT is not restricted to ideal gases. The equation of state can be generalized
to the form

pn = Pn- I + 4'P (en - - I)

where 43P/8 can vary in time and space. However, incompressible flows cannot be
handled by BIC-FCT in its current form because FCT is not a divergence-free
algorithm.

In summary, BIC-FCT has opened up the possibility of doing accurate, very
slow flow calculations in which compression is important. Future computational
directions include extensions to finite elements £24] and to addition of other
physical processes such as gravity, viscosity, and chemical reactions to simulate
premixed flames, diffusion flames, and turbulent jets.
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FLIC - A DETAILED, TWO-DIMENSIONAL

FLAME MODEL

1. Introduction

This report describes the new computer code FLame with implicit Convection

(FLIC), a two-dimensional time-dependent program developed specifically to com-
pute and study the behavior of flames and other subsonic chemically reactive flows.
In order to describe a flame in enough detail to simulate its initiation, propagation,

and extinction, FLIC combines algorithms for subsonic convective transport with

buoyancy, detailed chemical reaction processes, and diffusive transport processes
such as molecular diffusion, thermal conduction, and viscosity. Currently, we have
not included algorithms for radiation transport or thermal diffusion, although these

important processes can, in p,4uciple, be added in the same modular fashion as
those physical processes that have been included.

FLIC solves the reactive-flow conservation equations for density, p, momentum,
p , energy, E, and number densities of the individual species, nk, k = , ... ,,

according to:

a+V. (pV) = 0, (1.1)

at *+V.(PVY) = -v7P+F_-VxjVxV+v(jAV-V), (1.2)

aE

1

EE V. --nhy, + Q,,# (1..3)
k=1 r=1

- V.(V) - -. (nkV )+Wk. (1.4)

Here T7 is the fluid velocity, P is the pressure, u is the coefficient of shear viscosity,

F is a body force, x is the thermal conductivity of the mixture of gases, hk is

the enthalpy of species k, t is the diffusion velocity of species k, Q, is the heat

Manuacrpt apprved July 26, 1989.
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released from reaction r, and wk is production of species k by chemical reaction.
These equations are solved assuming that the individual species are ideal gases
obeying the thermal equation of state,

Pk = nkkT, (1.5)

and that the differential relation between internal energy u and pressure P is given

by

bu SP (1.6)

where 7, the ratio of specific heats of the mixture, is a function of its temperature

and composition.

FLIC solves these equations in two dimensions for low-velocity compressible
flow such that the Mach number is less than 0.1. Depending on specified initial and
boundary conditions, the flames modeled can be either premixed or diffusion flames
in either planar or axisymmetric geometries.

To date, FLIC has been applied to the study of the cellular instability near

the flammability limits of a premixed flame in a gas containing hydrogen, oxygen,
and. nitrogen flame [1]. Cellular flames are formed when the mass diffusion of the
deficient reactant overwhelms the stabilizing influence of heat conduction [2,3]. For
hydrogen flames, this behavior is seen close to the extinction limit [4] when the flame

is thick and temperatures are low. The fluid velocity is usually low, typically less
than 20 cm/s in the burned region. Radiation effects are not important because

the flame is not luminous and absorbing species, such as C0 2 found in hydrocarbon
flames, are absent. A brief summary of this work is given in section 6.

1.1 Algorithm Development and Implementation

Producing a code that describes low-speed flames required the development of sev-
eral new numerical memrods as well as finding new ways to implement existing
algorithms. For example, a new multidimensional, low-speed convection algorithm
had to be developed. An important requirement of any convection algorithm is
that the numerical diffusion not be larger than the physical diffusion processes that

must be resolved. The FCT method [5,6] meets this criterion, but it is inherently

" • II2



an explicit method; so that the small timesteps it requires makes it inefficient for
low-speed flows. The BIC-FCT method [71 was developed specifically to combine
the accuracy of FCT with the efficiency of an implicit method for low-speed flows.
BIC-FCT allows timesteps up to a hundred times larger than FCT and yet the cal-

culation time of one BIC-FCT timestep is approximately equal to the calculation
time of one timestep in the standard FCT module. Section 2 describes BIC-FCT

in detail.

To solve the detailed combustion equations for hydrogen-oxygen chemistry in-
volves solving coupled nonlinear ordinary differential equations for eight species and
48 chemical reactions representing the conversion of chemical species and chemical
energy release into the system. This is the most expensive part of a reactive flow
calculation because it requires integrating the set of equations at each computa-
tional cell for each timestep. The characteristic times of these differential equations
vary by orders of magnitude, resulting in a set of very "stiff" equations. Then,
because the cost of the calculation is approximately linear with the number of
computational cells, the computational cost can be extreme in multidimensional
computations. FLIC handles the cost of integrating ODEs in two ways: one, by
not integrating the chemical reaction equations where there is nothing or essentially
nothing happening, the other is by optimizing the integration procedure. We are
using the CHEMEQ (8,91 method to solve stiff sets of ordinary differential equations,
but in the TBA implementation that is fully optimized for the CRAY X-MP com-
puter. TBA, described in section 3, allows speeds of up to 50 percent over VSAIM.
the multidimensional implementation of CHEMEQ used to date.

Thermo-physical properties of the individual species and the mixture are re-
quired throughout the computation. These properties are modelled with high-order
curve fits to values derived from more accurate calculations. The individual proper-

ties are combined where needed to obtain mixture properties through mixing rules.
This simplified method is highy efficient yet sufficiently accurate. Section 4 describes
the numerical solution of the diffusive transport processes.

The submodels representing the various physical processes are in independent
modules that are coupled together. Several modifications have been made to the
usual timestep splitting method in order to increase the stability limits and improve
the efficiency of FLIC. Section 5 describes the details of these improvements.

3



1.2 Comparison with FLAMElD

FLAME1D is a one-dimensional program used extensively to study the properties

of the ignition and extinction of hydrogen flames [101. It is useful to compare FLIC

to FLAMED because some FLAMED algorithms are not obviously extendable to

multidimensions and others are simply too expensive. The more important differ-

ences between these codes are described here.

1. FLIC uses an Eulerian representation of the convective transport instead of

a Lagrangian representation. Specifically, ADINC, the one-dimensional La-

grangian algorithm [11] used in FLAMElD, is replaced by BIC-FCT [7], a very

accurate multidimensional implicit Eulerian algorithm. A Lagrangian formu-

lation, though preferable, is exceedingly difficult in multidimensions. However,

unlike ADINC, BIC-FCT can be readily used to describe two-dimensional or

three-dimensional flows.

2. Although the basic CHEMEQ algorithm is used in both codes, the VSAIM

implementation used in FLAMED was replaced by the TBA implementation.

This algorithm is optimized for the CRAY X-MP, and can be retrofitted into

CRAY versions of FLAMEID.

3. Another expensive part of the flame calculation is determining the amount

that individual species diffuse. In FLAMEID, we used an iterative matrix

expansion algorithm [12] that produces the diffusion flux of a species to arbi-

trary order, although we generally used it only up to second order. In FLIC,

we use a simpler technique which first evaluates a Fickian flux and then makes

a correction. This approach is equivalent to the first order of the matrix ex-

pansion, cannot be made higher order, but it is computationally less intensive

and certainly adequate for the flame problems treated to date.

4. In FLAMEID, thermal conduction is computed directly from expressions for

the individual thermal conductivities of the species derived from molecular

theory. In FLIC, we use curve fits and mixture rules which has been bench-

marked against the more exact calculations used in FLAMEMD.

5. Whereas FLAMElD did not include algorithms for either viscosity or gravity,

both of these effects are included in FLIC.

4



6. At the moment, FLAME1D has a more flexible gridding algorithm. Because
the basic convection algorithm in FLAME1D was Lagrangian, relatively non-

diffusive cell splitting and merging routines are used to refine or coarsen the
grid. The result is a rather general gridding capability. The general approach

to adaptive gridding must be different in a multidimensional Eulerian code,
and this is now being developed for FLIC.

• m m~mmlam mam ma5



2. Convection

In this chapter, we describe the fluid convection algorithm, BIC-FCT, how it is

used in FLIC, and how the gravitational acceleration term is included. In detailed

flame simulations that must resolve the individual species diffusion, the numerical

diffusion that results from solving the convection equations numerically must be

small enough so that we can resolve the physical diffusion processes. For high-
speed flows, the Eulerian explicit monotone methods such as FCT [131 or most

of the TVD (14] methods achieve this goal, and some even allow variable-order
accuracy. Unfortunately, the timestep required by explicit methods must be small

enough to resolve the sound waves in the system, otherwise the numerical method

is unstable. There is little or no penalty paid for this small timestep in high-speed
flow in which the physical phenomena evolve fast, but for low-speed flows, explicit

methods are very inefficient and expensive. For example, resolving a microsecond

of physical time with a timestep of 10-8 s requires 100 timesteps, but resolving one

second requires 10s timesteps. For many low-speed flows this temporal accuracy
is unnecessary; we need only to be able to resolve a millisecond of physical time

with 100 timesteps. For this reason, implicit methods that allow large timesteps

are usually used for calculations of low-speed flows.

One often-considered approach to eliminating numerical diffusion is to use La-
grangian methods, in which diffusion is totally absent by definition. We have found

that this approach works well in one dimension, but there are a number of seri-

ous problems in multi-dimensions [151. In complex flows, the multidimensional La-
grangian grid becomes distorted to the point where nearest neighbors are no longer

connected by grid lines, a situation that leads to extremely inaccurate calculations.

Eventually grid lines can even cross, which makes the solution unstable. Such prob-
lems are often avoided by a regridding procedure that actually adds diffusion to

6



the solution, or by using dynamically restructuring grid such as in SPLISH [161.

which adds complexity. Except in one dimension, it has not yet been shown that

Lagrangian methods are to be preferred because of the geometric complexities that

arise.

Most common methods for solving convection problems use algorithms that

produce ripples near steep gradients such as in a flame or shock front. The first high-

order, nonlinear, monotone algorithm, Flux-Corrected Transport (FCT) [13], was

designed to prevent these ripples by maintaining local positivity near steep gradients

while keeping a high order of accuracy elsewhere. Other nonlinear methods have

been reviewed by Woodward and Collela [14]. Although these methods are explicit,

there are recent reports on implicit, nonlinear methods [17,18]. A major problem

with applying these implicit methods to low-speed flows is that they are expensive
even though they can be very accurate.

The Barely Implicit Correction to Flux-Corrected Transport, BIC-FCT [7], was
designed to overcome the problem of numerical diffusion in low-velocity implicit

methods. BIC-FCT combines an explicit high-order, nonlinear FCT'method [5,6]

with an implicit correction process. This method removes the timestep limit im-

posed by the speed of sound on explicit methods, retains the accuracy required to

resolve the detailed features of the flow, and keeps the computational cost as low

as possible.

2.1 The BIC-FCT Algorithm

BIC-FCT is based on an approach suggested by Casulli and Greenspan [19], who

showed that it is not necessary to treat all of the terms in the gas-dynamic equations

implicitly to be able to use longer timesteps than those dictated by explicit stability

limits. Only those explicit terms which force a timestep limit due to the sound speed
have to be treated implicitly. In a pure convection problem, the timestep is still

limited by the fluid velocity, but for the low Mach number flow in fla.-nes, this results

in a hundredfold increase in the timestep. The term "Barely Implicit Correction"

emphasizes that only the minimal number of terms in the conservation equations

are treated implicitly.
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BIC-FCT solves the convective portion of the Navier-Stokes equations:

+ V (pV) = 0, (2.1)

-+V . (p V) = -VP + F-, (2.2)

+ Vv((EV))+S, (2.3)

nk+V(flkV) = 0. (2.4)

where f is a body force, usually gravity, and S is used to couple in the contributions

to the change in energy due to other processes as discussed in chapter 5. In addition,

note that convection of species is done at the same time.

BIC-FCT takes a predictor-corrector approach. The first explicit step uses FCT

and a large timestep governed by a CFL condition on the fluid velocity,

A t V - V ), (2.5)

pI -ztp = - V.(pVo0)VP- (2.6)AtE' At E° = -V. (Eo + P) [w ,7 + (1 - )o + S, (2.7)

where the implicitness parameter 0.5 <w < 1.0. This produces the intermediate

values denoted by primes.

The second step is an implicit correction requiring the solution of one elliptic

equation for the pressure correction, 6P =- w(P" - Po) :

-PEt+. V6P = t -E' (2.8)

('y - 1)WAt ArV ( At 2At

The elliptic equation (Eq. (2.8)) is solved by the multigrid method, MGRID [20].

This method is O(N) in both number of computations as well as storage. It is

vectorized and extremely efficient on the CRAY X-MP. MGRID requires that the

number of grid points in each direction be factorizible by a large power of two.

While this has not proven to be very restrictive for FLIC, it has been a problem

in other applications. MGRID also has only a limited set of boundary conditions.

Fortunately, the Neumann boundary conditions used in solving Eq. (2.3) has been

implemented.

. . .



The final step is the correction of the provisional values for momentum, energy,

and pressure:

p- " = -AtV6P + p' ', (2.9)
_6P

E-= 6 + E, (2.10)

P1n = 6P+PO. (2.11)

Because BIC-FCT uses FCT for the explicit step, it has the high-order monotone

properties that accurately treat sharp gradients. This accuracy combined with the

savings that result from removing the sound-speed limitation on the timestep makes

BIC-FCT a very cost effective convection algorithm. BIC-FCT takes about 15ps
per point per computational timestep on the CRAY X-MP computer. This is as fast
as the explicit FCT code currently in use. BIC-FCT has opened up the possibility

of doing accurate, multidimensional, slow-flow calculations in which fluid expansion
is important. Because the cost of BIC-FCT is modest even in two dimensions,

reasonably detailed chemistry models as well as other physical processes can be

included. Premixed flames, diffusion flames, and turbulent jet flames are some of

the applications for which BIC-FCT is well suited.

2.2 Gravity

Buoyancy effects due to the force of gravity have been incorporated in FLIC. The

body force term F in Eq. (2.6) is used for this purpose and is given by

P= AP - P*) (2.12)

where p,. is a suitable reference density, usually the cold ambient density. As

currently implemented, the direction of the gravity vector is aligned with the flow
direction, but this restriction can be removed trivially. Indeed, the gravity vector

can be made time-dependent to simulate g-jitter in microgravity.

If the ambient density cannot be used, the hydrostatic head has to be included

in its place. This second approach is not as suitable as the method given by Eq.

(2.12) because of the need for very high precision calculations.

9



3. Chemistry

This chapter describes the integration package TBA that is used to solve the ordi-
nary differential equations (ODE's) representing the chemical reactions and energy
release. TBA is a fully vectorized FORTRAN subroutine for the CRAY X-MP. It is
designed to replace VSAIM, the older vectorized version of CHEMEQ [8,9], an al-
gorithm that solves a system of ODE's in a single computational cell. Both VSAIM

and TBA are based on CHEMEQ and are designed to make the calculation of a
large number of sets of ODE's more efficient. TBA is faster than VSAIM because
it.is designed to make specific use of the Cray X-MP's gather/scatter hardware and
other capabilities.

The ODE's solved by these routines are of the form

dni
dt--= F = Qj - Lji, (3.1)

where rl is the number density of species i, Qj is the rate of formation of species i,

and Linj is the rate of destruction of species i. Sometimes these equations can be
solved by classical algorithms, sometimes they are stiff and need special techniques.
TBA uses a different algorithm for each type of equation and gains efficiency by

gathering all equations of a given type together and integrating them by groups.

A detailed hydrogen-oxygen reaction scheme has been implemented in FLIC.

This reaction scheme consists of forty-eight reversable reactions involving eight
species. Nitrogen, acting as a diluent, is considered to be chemically inert. This
reaction scheme, developed by Burks and Oran [21], has been used by Kailasanath
et aL (22] in FLAME1D and is given in table 3.1. The total rate of formation and
destruction of each species is obtained algebraically from the reaction rates of the
individual chemical reactions and from the species concentrations. The reaction

10



rate for each chemical reaction r is assumed to follow the modified Arrhenius form:

k, = ATBe - CIT (3.2)

The computation of the rates in Eq. (3.2) is quite time consuming, mainly due

to the calculation of the exponential term. Some time can be saved by computing

the temperature dependence of the reaction rates only once per global timestep.

The rates of formation and destruction of the species, which are also dependent on

the species concentrations, is computed as often as needed by TBA, which updates

them many times during each global timestep.

3.1 Numerical Method

TBA uses a second-order predictor-corrector r-.ethod that is essentially the same

numerical integration algorithm as CHEMEQ [9]. Normal ODE's are integrated

using a simple classical scheme and stiff ODE's are integrated using an asymptotic

method. Unlike CHEMEQ or VSAIM, TBA also recognizes equations that will

approach equilibrium during the period of integration and handles them with a

third scheme. TBA sorts the equations from every cell into one of three types

- normal, stiff, or equilibrium, and then integrates all of the equations of each

type together. A large number of cells are integrated simultaneously; as cells are

completed, the results are returned to the control program and stored and data

from new cells are read in and integrated.

The entire set of equations from each cell is integrated using the smallest timestep

required by any equation in the set. The timestep is then increased or decreased

based on the relative difference between the predictor and corrector stages. The

predictor stages for the three types of equations are:

n = n? + 6tF$', (Normal) (3.3)
StFR

n T 1=+ 6tL (Stiff) (3.4)

n = Q,/Lj. (Equilibrium) (3.5)

The corrector stages are:

6t
n! = n?+--'+ J , (Normal) (3.6)
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4.2 Thermal Conduction

The effects of thermal conduction are expressed in the energy equation as

SV- (xVT)(412)

where r. is the mixture thermal conductivity. Explicit finite differencing introduces

a stability limit

max (,cZAt/p4,AX2) < 1/2,

where /pc, is the thermal diffusivity coefficient. Subcycling is used here in the
same manner as it is for mass diffusion. However, this stability condition is less
stringent than that for mass diffusion and typically only two or three subcycles are
needed.

The mixture thermal conductivity ic is obtained by combining the thermal con-
ductivities of the individual gases {xk} that are in the mixture. The {[k} are
estimated theoretically and are a function of temperature. We have used the third-
order polynomial fit in temperature determined by Laskey [371 and is presented in
Table 4.2. The mixture thermal conductivity is then calculated using (Mathur et
al. [381)

1 Xklc, + no, 
(4.13)

4.3 Viscosity

The viscosity terms in the Navier-Stokes equations are included in FLIC. The
stress-tensor term, which represents the effect of viscosity in the momentum con-

servation equations, is:
=-PV (4.14)

where
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Species A B C D

H 4.710(3) 3.354(1) -9.971(-3) 1.964(-6)

O 1.089(3) 1.038(1) -3.739(-3) 8.251(-7)

H2  6.306(3) 4.304(1) -8.505(-3) 2.160(-6)

OH 1.679(3) 1.091(1) -1.613(-3) 4.150(-7)
H20 -2.077(2) 1.603(1) -7.932(-4) 1.530(-7)

02 3.862(2) 8.613(0) -1.966(-3) 3.619(-7)
HO2  1.576(2) 1.070(1) -1.143(-3) 4.471(-8)

H2 02  -1.097(3) 9.895(0) -1.779(-3) 1.396(-7)

N2  7.024(2) 6.917(0) -1.191(-3) 2.035(-7)

Table 4.2 Thermal conductivity of species k, ixk = A + BT + CT2 + DT3,

erg/cm-s-K. Exponentials to the base 10 are given in parentheses.

and p is the dynamic viscosity coefficient. The quantity A, the second coefficient of

viscosity, is set to -2/ 3 1&. The stress tensor r includes all the viscous terms which

arise in the compressible Navier-Stokes equatioris.

Eq. (4.14) is solved explicitly in the same manner as the mass diffusion or

thermal conduction equations. Thus there is a stability criterion given by

max (a~t/p~z2) <1/2,

where j/p is the kinematic viscosity. Subcycling is used so that the overall com-

putational timestep is set by the convection stability limit and not by the viscosity

stability limit. If the number of subcycles required for stability exceeds some max-
imum value, the global timestep is reduced. The viscous diffusion algorithm was

tested using two test problems: 1) the boundary-layer growth over a flat plate par-

allel to the flow, and 2) the boundary-layer thickness on a flat plate normal to the

flow (stagnation point flow).

For the parallel-plate test, the velocity profile of the parallel flow was initially

uniform along the plate with a typical velocity profile that is valid for a boundary-
layer thickness greater than three computational cells. This particular initialization

was chosen because a physical boundary layer less than three cells wide would be
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swamped by numerical diffusion from the FCT algorithm that creates a boundary

layer at least this thick. Setting up the problem this way simulates the growth

of a boundary layer away from the leading edge of the plate and minimizes any

numerical effects on the solution. The result of this test is a boundary layer whose

growth matches the Blasius solution.

The stagnation-flow test was initialized with a boundary layer of constant thick-

ness and uniform velocity along the plate. Again, the initial boundary layer thick-

ness was more than three cells to minimize numerical effects. The results showed

the development of a constant-thickness boundary layer whose velocity profile very

closely matched that predicted by theory.

For a gas containing a single species k, the dynamic viscosity i can be otained

from the kinetic theory of gases [331. Over a suitable range of temperature, this can

be expressed as a third-order polynomial in temperature. Laskey [371 has compared

this polynomial fit, presented in Table 4.3, to the calculations and to tabulated

values for the viscosity and found good agreement. The mixture dynamic viscosity

is calculated using the expression (Wilke [39])

"'r XjJk. (4.16)
k=I

where

S 1(+ ) (1 + () (4.17)

This mixture viscosity, ju, is used in the stress tensor (Eq. (4.15)) to model the

viscous portion of the Navier-Stokes equations.
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Species A B C D

H 1.516(-5) 1.074(-7) -3.178(-11) 6.255(-15)

o 4.504(-5) 5.355(-7) -1.811(-10) 3.740(-14)
H2  2.802(-5) 2.236(-7) -6.958(-11) 1.399(-14)

OH 5.630(-5) 5.193(-7) -1.678(-10) 3.413(-14)
H20 -8.597(-6) 6.608(-7) -2.305(-10) 4.601(-14)

02 4.930(-5) 5.861(-7) -1.983(-10) 4.093(-14)
HO2  5.006(-5) 5.952(-7) -2.013(-10) 4.156(-14)

H20 2  -9.109(-6) 3.966(-7) -1.345(-10) 2.623(-14)

N2  5.302(-5) 4.596(-7) -1.464(-10) 2.969(-14)

Table 4.3 Viscosity of species k,/4k = A + BT + CT 2 + DT 3,dyne-s/cm2 . Expo-

nentials to the base 10 are given in parentheses.
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5. Model Integration

The conservation equations contain terms representing convection, buoyancy, ther-
mal conduction, molecular diffusion, viscous diffusion, and chemical reactions. The

approach that FLIC uses is to determine a global timestep, solve equations rep-
resenting the individual physical processes separately for that timestep, and then
couple the solutions. The coupling procedure is a variation of the standard timestep
splitting method of Yanenko [40] and described for reactive flows by Oran and

Boris [15]Chapters 4 and 13.

The usual explicit timestel>-splitting approach assumes that in some predeter-

mined global timestep, the effect of all the physical processes can be evaluated as
a running sum of the effects of individual processes. Each physical process is inte-

grated independently using the results of the previous process as initial conditions.

This method is correct in the limit of small timesteps and works well in a practical
sense when the changes in the variables during the global timestep are small. Using
this appproach, the global timestep is often limited to the smallest timestep required
by the stability limits of the integration algorithms for the various processes. This

is the approach we have used in a number of programs in which the convection is
solved by an explicit integration procedure. The global timestep is usually deter-

mined by the CFL condition on the sum of the sound speed and the fluid velocity.

The chemistry integration is subcycled in the global timestep. However, subcycling

can sometimes be used for individual processes if changes in variables due to that
particular process are not too large.

Figure 5.1 summarizes the integration process in a typical FLIC timestep. The
global timestep is first estimated based on the stability requirements of the con-
vection algorithm, BIC-FCT. Then it is compared with the stability requirements
of the particular physical processes which are allowed to subcycle if necesary to
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ensure stability. The overall timestep must be decreased sometimes to ensure that

a physical variable does not change too much during a timestep. The most obvious

difference between the scheme shown in Fig. 5.1 and the standard timestep splitting

approach is that changes in the internal energy caused by each process are evaluated

and added up at the end of a global timestep. This energy change is then used by

the BIC-FCT convection algorithm (see Eq. (2.7)). This approach is quite similar

to "that used in FLAMElD [221, however, now changes in the internal energy are

accumulated instead of changes in the pressure. The ADINC method [111, used in

FLAME1D, does not solve an energy equation, and thus the only way other pro-

cesses can be coupled is through the pressure. The BIC-FCT scheme used by FLIC

does not require that energy changes be applied only during the convection step;

this is merely a convenience that allows for larger global timesteps due to tighter

coupling.

Some of the individual process integrations in FLIC are subcycled within a

global timestep, including the ordinary differential equations representing the chem-
ical reactions and the diffusive terms such as molecular diffusion and thermal con-

duction. For example, the timestep limit imposed by some chemical reactions may

be orders of magnitude lower than that required by other physical processes, arid

so the chemistry integration is subcycled. Subcycing is built into the chemib,. - in-

tegration in an extremely sophisticated manner [9], so that the maximum allowable

timestep at each computational cell is used, completely independent of the timestep

in other cells. The chemistry is integrated up to the overall timestep before it is

coupled to the other processes. However, if the energy release in an overall timestep

due to chemistry is too large (typically greater than 10%), then the overall timestep

must be decreased. Mass diffusion and thermal conduction are also subcycled, but

only up to five times. The accuracy of the solution is generally tested by performing

a separate calculation with a smaller timestep and noting whether the solution has

converged.

All dependent variables, except for internal energy, are updated after each pro-

cess integration, but dependent variables are not updated during subcycling of a

process. This leads to a considerable savings, especially during the chemistry in-

tegration, because the evaluation of the temperature exponentials in Arrhenius ex-

pressions is done only once per global timestep. On the other hand, the global

timestep may have to be decreased if the dependent variables change too much.
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One consequence of a source term in the energy equation is the possibility of

"ripples" in the pressure, which then manifest themselves in other variables as well.
These ripples arise if a strong source is localized to a region only a few cells wide.

These ripples are insignificant in FLIC where the flame zone is well resolved, but
can be significant in other applications [37]. One way to avoid the ripples is to use

a high-frequency filter such as

plilteired = p + aV 4 p,

where a is a small constant. Other filters, including another FCT step, can also be

used.

The particular advantages to using timestep splitting are that we can write very

modular programs in which the integration of each physical process can be carried

out with an optimum method, debugging is simpler, and explicit subcycling can

be used to keep the costs down. Implicit methods can be used to avoid subcy-

cling, but are more expensive when compared to explicit methods subcycled only

a few times. In FLIC, only five subcycles are allowed for each of the diffusion

processes. Chemistry, on the other hand, subcycles thousands of times. At this

point, it is not entirely clear if the extreme simplicity of the CHEMEQ scheme [9]
results in faster integration of the chemistry equations than a more complicated

implicit scheme. Disadvantages of timestep splitting are that the coupling process

can be complicated, the algorithms and the overall program are less stable, and the

timestep must be carefully controlled. However, we have found that the benefits of

modular and fast programs outweigh potentia disadvantages. This is discussed in

some detail by Oran and Boris [151, pages 131-133.

27



6. Applications

FLIC has been written in a general manner so that it can be applied to solve

a variety of slowly evolving problems involving chemistry and diffusive transport
processes. It has already been applied to the study of multidimensional flames in
premixed gases [1,41,421 and co-flowing diffusion flames [37,431. A specific applica-

tion of the code to the study of cellular flames in hydrogen-oxygen-nitrogen mixtures

is described below to show what is required to perform a calculation with the code

and to interpret the output from the code. Then other applications of the code are
briefly discussed to bring out the generality of FLIC.

6.1 A Sample Calculation

Flames in lean hydrogen-oxygen-nitrogen mixtures are known to exhibit a multidi-

mensional cellular structure. The cellular structure is the result of a thermo-diffusive

instability of a planar flame in the same mixture. Below we demonstrate how FLIC

can be used to simulate the transition from a planar flame to a multidimensional

cellular flame in a zero-gravity environment.

We need as input to the model:

A chemical reaction scheme involving all the species of interest (table 3.1),

Molecular diffusion coefficients for each pair of species (table 4.1),

For each species:

Molecular weights,

Thermal conductivity (Table 4.2),

Viscosity (Table 4.3),
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Heats of formation (22],

Enthalpy coefficients [221.

To complete the specification of the problem, we also need the initial and bound-

ary conditions such as composition, pressure, and temperature, in addition to the
physical and chemical parameters given above. Figure 6.1 describes the configu-
ration studied and gives the boundary conditions of the computational domain.
Unburnt gas flows in from the left, and reaction products of the flame front flow out

at the right. If the inlet velocity equals the burning velocity of the flame, the flame

is fixed in space yielding a steady solution. Thus, transient effects from ignition
can be eliminated. The initial conditions for the two-dimensional calculations were

taken from one-dimensional calculations that gave the conditions for steady, propa-

gating flames. The two-dimensional computational domain for this simulation was

2.0 cm x 4.5 cm, resolved by a 56 x 96 variably spaced grid. Fine zones, 0.36 mm
x 0.15 rm, were clustered around the flame front.

The initial conditions specify a planar flame in a fuel-lean hydrogen-oxygen

mixture diluted with nitrogen, H2 :0 2 :N2/1.5:1:10, a flame that showed multidimen-

sional structure in the experiments by Mitani and Williams [4). In order to study

the evolution to cellular structure, the initial conditions were perturbed by displac-

ing the center portion of the planar flame in the direction of the flow. The evolution

to cellular structure is obtained by studying the output from the simulations.

The output from the calculation consists of the spatial and temporal distribution

of all the species involved as well as the fluid density, temperature, pressure. internal

energy, and momenta. Display of the data is not done by FLIC, but is instead done

as a post-processing operation. This cuts down the length and complexity of the

FLIC code. A very useful diagnostic is contour plots showing isotherms and species

distributions. Diagnostics, such as color-flood plots, allow visual interpretation of

the data.

Figure 6.2 shows a sequence of isotherms from the calculation. The isotherms

show that the temperature increases in the center portion of the flame, convex to the

flow, and decreases in the the two adjacent concave regions, indicating more vigorous

reaction in the convex region. The atomic hydrogen concentration increases in the

convex and decreases in the concave regions. Also, the burning velocity in the
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Figure 6.1 Initial and boundary conditions for the two-dimensional flame calcu-

lations.
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convex region appears slightly higher than the burning velocity in a planar region,
and the burning velocity in the concave regions were noticeably lower. Thus, this

calculation shows that the planar lean one-dimensional hydrogen flame is unstable

and evolves into a multidimensional flame having a cellular structure.

6.2 Applications of FLIC

The FLIC code has been used extensively to study the detailed evolution of cel-

lular flames in premixed gases (1], to investigate the mechanisms which can lead to

cellular structure [42], effects of gravity on flame structure and instabilities (41,42].

These studies have helped strengthen the prevailing theory of cellular instability

and cast serious doubt on another theory which was also under consideration [1]

FLIC has been geared primarily to these types of applications and several other

related applications to premixed flames are planned for the near future.

FLIC can be converted to the study of diffusion flames extremely easily, and

is begging for a suitable application in this area. A low-speed diffusion flame

code [37,43] which has been used to study jet flames uses the same transport and
diffusive packages as FLIC. This code uses simplified chemistry, which was first

calibrated by comparison to a detailed calculation with FLIC.

6.3 Future Applications and Code Development

Calculations such as the one described earlier are time consuming (5 hours of

CRAY X-MP time). There is interest to carry out these calculations in a larger

domain for longer times. The cellular structure exhibited by flames is actually three-

dimensional, so if these instabilities are to be studied fully, a three-dimensional ver-

sion of FLIC is required. The computer time for these studies can quickly become

intolerable; it is proposed to alleviate this by taking advantage of the multiprocessor

architechure of the CRAY X-MP and the new Y-MP with its 16 processors. This

will require some restructuring of the code and its algorithms to utilize microcask-

ing appropriately. This restructuring may be simplified with the new "autotasking"
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facility on the CRAY Y-MP.

One area of interest is the investigation of the behavior of flames near extinguish-

ment. In particular, the prediction of flammability limits of flames in a flammability

tube will provide a means for quantitative comparison with experiment. This com-

plex task will require the addition of mechanisms which represent losses, including

losses to the wall. The physics of the loss mechanisms of radicals to the walls is not

yet fully understood. These additional mechanisms will need to be incorporated

into FLIC.

Detailed calculations will need to be performed for other more complex fuels

of practical interest. The primary difficulty is in coping with the large number of

species and chemical reactions that will be required for even the simplest hydrocar-

bon fuels. While the precise scaling of computer time with chemical complexity is

not known, it is expected that the increase in the number of species will have the

most dramatic effect. Thus, there is a need for reliable simplified chemistry models

which have been first validated against a full model. It is anticipated that suitable

simplified models for methane will become available soon. Radiation can not be

neglected in hydrocarbon combustion. Thus a gas phase radiation model will have

to be incorporated. Consideration of soot will have to wait until reliable models are

*available, which will not be in the near future.

All future applications are in areas that will require enormous amounts of com-

puter time. One way to cut down on costs is to perform calculations only where

they are strictly required. Calculations can be skipped in regions of low gradients,

be it spatial or temporal gradients. This will require dynamic regridding or, more

generally, re-discretization of the governing equations. A suitably efficient algorithm

for this is essential, and its development is underway. Limitations and peculiarities

of the target computer architecture will play a large role in determining the shape

of these future versions of FLIC.
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Time-dependent, two-dimensional simulations of perturbed premixed laminar flames have
been used to study the development of cellular structures in rich and lean hydrogen flames.
The model includes detailed hydrogen-oxygen combustion with 24 elementary reactions of
eight reactive species and a nitrogen diluent, molecular diffusion of all species, thermal con-
duction, and convection. Calculations of perturbed lean hydrogen flame evolution showed
that the flame was unstable at the front, and the structure that evolved resembled cellular
structures observed in experiments. The same perturbation applied to a rich hydrogen flame
showed that the perturbation died out and cellular structures did not appear. Binary diffusion
coefficients were varied to test the role of molecular diffusion in the development of cellular
structure. When the coefficient of molecular hydrogen was set equal to that of molecular
oxygen, the perturbation died out; when the coefficient of molecular oxygen was set equal
to that of molecular hydrogen, the instability persisted. The results of the simulations support
the diffusional-thermal theory of flame instability.

Introduction in rich mixtures when it is heavier than air.4"s These
observations suggest that the relative diffusivities of

Previous one-dimensional, time-dependent nu- fuel and air are crucial in determining the sensitiv-
merical simulations of laminar premixed flames have ity to cellular instability, and lead to the formula-
given physical insights and quantitative information tion of the preferential diffusion theory.' By this
on the effects of parameters such as stretch, cur- theory, preferential diffusion of the lighter reactant
vature, and dilution on flame initiation and prop- creates regions of varying stoichiometry in front of
agation, as well as qualitative information on flam- a non-planar flame. This in turn causes portions of
mability limits. 1"2 The structure of flames, especially the flame to move at different speeds, making the
near flammability limits, is usually multidimen- flame front either less or more planar. This theory,
sional. To investigate such multidimensional effects, however, does not explain all observations of cel-
we have developed a time-dependent two-dimen- lular flames. For example, ethane and ethylene have
sional model that can simulate either premixed or molecular weights slightly less than that of oxygen,
diffusion flames. In this paper, we present results yet show cellular structure in rich mixtures.
of calculations using this model to study premixed A second theory, the diffusional-thermal theory 6
laminar flames in rich and lean hydrogen-oxygen assumes an abundance of the excess component, so
mixtures diluted with nitrogen. These results are that the reaction is controlled only by the deficient
discussed in terms of current theories of flame sta- component. For a simple one-step reaction in what
bility and cellular structure formation, and the va- is effectively a single reactant system, this theory
lidity of two prominent theories is investigated, predicts cellular instability when the thermal dif.

Early experimental observations showed that cel- fusivity of the mixture is sufficiently smaller than
lular flames occur both in lean hydrogen-air and rich the mass diffusivity of the reactant. For lean hy-
hydrocarbon-air mixtures such as propane and drogen-air mixtures, hydrogen is the limiting reac-
ethane.3'4 Cellular flames are generally observed in tant and its mass diffusivity significantly exceeds the
lean mixtures when the fuel is lighter than air, and thermal diffusivity of the mixture. In rich hydro-
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1518 LAMINAR FLIAMES: FLAME SHAPE'

gen-air mixtures, oxvgen is the limiting reactant ad numerical diffusion must le Colisiderably less thl
its miasS ditusivity is nearly the saine as tlie inix- any physical dillusion effect. rhe Barely hilicit
ture thermal diffusivity. Hence this theory agrees Correction Flux-Corrected Transport (I5IC-FCT)
with early experimental observationis of unstable lean algorithm12 solves the coupled continuity equations
hydrogen-air mixtures and stable rich mixtures. for a low-speed variable density flow. BIC-FCT

A limitation of the diffusional-thermal theory is combines an explicit nonlinear FCT method 13
.
14 with

that it assumes constant fluid density, and hence an implicit correction process. This combination
neglects the effects of thermal expansion. Further- maintains high-order accuracy, yet removes the
more, in this theory, the cell size increases indef- timestep limit imposed by the speed of sound. Us-
initely as the Lewis number goes to its critical value. ing FCT for the explicit step, BIC-FCT can accu-
More recent experiments8 '9 have shown cellular in- rately compute sharp gradients without overshoots
stabilities in some rich and near-stoichiometric hy- and undershoots. Thus, unphysical chemical reac-
drogen-air mixtures, contradicting both theories. The tions from spurious oscillations do not occur. The
diffusional-thermal theory is strictly valid only for computational cost per timestep of BIC-FCT is about
strongly non-stoichiometric mixtures, although it has the same as the standard explicit FCT method.12
been extended'"' to near-stoichiometric mixtures Thermal conductivity of individual species is
by considering both the deficient and abundant modeled by a polynomial fit in temperature to ex-
components. According to this two-reactant theory, perimental data. Individual conductivities are then
stability depends on the stoichiometry of the mix- averaged using a mixture rule1'5 16 to get the coef-
ture, the difference between the Lewis numbers of ficient for the mixture. A similar process yields the
the two components, and the reaction orders of each mixture viscosity from individual viscosities. Heat
reactant. This suggests that in multicomponent sys- and momentum diffusion are then calculated ex-
tems, the Lewis numbers of many components and plicitly using these coefficients.
detailed chemical kinetics might play a role. The Mass diffusion also strongly effects the properties
modified diffusional-thermal theory still neglects of laminar flames. Binary diffusion coefficients are
thermal expansion of combustion products. represented by exponential fits to experimental data,

The simulations of multidimensional flame struc- and each species coefficient is obtained by mixture
ture presented here include a multi-reaction mech- rules.' 5 Individual species diffusion velocities are
anism for hydrogen combustion, molecular diffusion solved explicitly by Fick's law, with a correction to
between the reactants, intermediates, and prod- ensure zero net flux. 6 This procedure is equivalent
ucts, thermal conduction, and convection. Such a to the algorithm DFLUX17 which solves multi-coin-
detailed model should allow us to investigate the ponent diffusion equations exactly. This method uses
tendency to show cellular instability, evaluating the no matrix inversions.
contributions of various physical processes, and the Chemistry of the hydrogen-oxygen flame is mod-
predictions of these theories. For example, pre- eled by 24 reversible reactions describing the in-
vious explanations have considered the fuel and ox- teraction of eight reacting species, H2, 02, H, 0,
idizer, but the instability may also depend on the OH, HO2, H202, H20, and N2 as a non-reacting
diffusivities of intermediate radicals. The effects of dilutentt"s These are solved each timestep with TBA,
the fluid dynamics (and therefore the variable gas a vectorized version of CHEMEQ, an integrator for
density) can also be evaluated. Below we describe stiff ordinary differential equations.' 9 Because of the
the numerical model, show its results in simulating complexity of the reaction scheme, and the large
hydrogen-oxygen flames with different stoichiome- number of cells in a two-dimensional calculation,
tries, and relate these results to the predictions of the solution of the chemical rate equations takes a
the two theories. large fraction of the total computational time.

All chemical and physical processes are solved
sequentially, then coupled asymptotically by time-

Multidimensional Flame Model step splitting.2° This modularity greatly simplifies
the model, and makes it easier to test and change.

A detailed model of a flame must accurately rep- Individual modules were tested against known an-
resent convective, diffusive, and chemical pro- alytic and numerical solutions. One-dimensional
cesses. The importance of each process varies from predictions of the complete model were compared
rich to lean flames, and is especially notable near to those of the Lagrangian model FLAMEID, which
the flammability limits, 2 where the exact behavior has been benchmarked extensively against theory
depends on a delicate balance among them. In this and experiment.'s Exact values of input data for a
section we briefly describe the algorithms used to hydrogen-oxygen flame, e.g. chemical reaction rates,
model and couple the effects, thermodynamics parameters, and molecular diffu-

The fluid convection algorithm must maintain the sion coefficients, have been described in detail pre-
sharp gradients present in flames. This means that viously, Is and hence are only referenced here.
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Tests of Mechanisms of Laminar Flame Flanws in u Ilydrogen-Rich Mixture:
Instal)ility Case two considers a distmirhance evilving in a

Initial cowditions for 21) calculations were taken fuel-rich ldrogen-oxygen mixtue nrc. ll,: N,

from ID calculations giving conditions for steady, 3.0:1:16. This mixture is stable in bth the ex-

propagating flames. Figure I describes the config- perimnents of Mitani and Williams," and our ealcu-

uration studied, and gives the boundary conditions lations. The initial disturbance quickly damps, re-

of the computational domain. Unburnt gas flows in storing the flame profile to its one-dimensional shape.

from the left, and reaction products of the flame Figure 3 shows the evolution of isotherms for the

front flow out at the right. If the inlet velocity equals rich flame. The perturbed center section rapidly

the burning velocity of the flame, the flame is fixed straightens, indicating lower flame speed than in the
in space yielding a steady solution. Thus, transient planar sections. A lower number density of H in

effects from ignition can be eliminated, and the one- the center indicates a weaker reaction, hence a lower

dimensional solution provides initial conditions for burning velocity. This is opposite to the behavior

the two-dimensional calculation. The two-dimen- observed in lean flame calculations.
sional computational domain was 2.0 cm X 4.5 cm, These results agree with experiments, and with
resolved by a 56 X 96 variably spaced grid. Fine both the preferential diffusion and diffusional-ther-
zones, 0.36 mm X 0.15 mm, were clustered around mal theories. In the next two studies, the diffusionthe flame front. coefficients of the reactants (H2 and 02) were

changed systematically to determine the role of mass
diffusion. All other variables were held the same as

Flames in a Hydrogen-Lean Mixture: in the fuel-lean case (H2 :0 2 : N2/1.5:1:10).

The first calculation is of a flame in a fuel-lean
hydrogen-oxygen mixture diluted with nitrogen, The Role of Mass Diffusion:
H2 :0 2 : N2 /1.5: 1:10, a flame that was clearly mul-
tidimensional in the experiments by Mitani and Equating the diffusion coefficient of hydrogen to
Williams. 9 The initial condition described by Fig. that of oxygen causes the light and heavy reactants
1 is perturbed by displacing the center portion of to diffuse at the same speed. This change stabilized
the flame in the direction of the flow. Figure 2 shows the one-dimensional flame. Figure 4 shows that the
isotherms just after the perturbation, and their sub- isotherms straighten out and slowly return to the
sequent evolution in time. The isotherms indicate unperturbed planar condition. A lower H concen-
temperature increases in the center portion of the tration was found in the center of the flame front,
flame, convex to the flow, and decreases in the two which is consistent with the observed flame stabil-
adjacent concave regions. This indicates more vig- ity.
orous reaction in the convex region. The atomic hy- The stability of the modified lean flame de-
drogen concentration increases in the convex and scribed above supports the preferential diffusion
decreases in the concave regions. Also, the burning theory. Because the diffusion coefficients of hydro-
velocity in the convex region appears slightly higher gen and oxygen are equal, preferential diffusion of
than the burning velocity in a planar region, and hydrogen cannot cause instability. Stabilizing fac-
in the concave regions noticeably lower. We con- tors, such as heat conduction, tend to restore the
clude that this lean one-dimensional flame is un- flame to its unperturbed position. However, these
stable; a pattern resembling a cellular structure ap- results also agree with the diffusional-thermal the-
pears by the time the calculation is terminated, or). Since the Lewis number of the reactants in the

modified lean flame is close to unity, the diffu-
sional-thermal instability is greatly reduced, and
stabilizing factors overcome any destabilizing ten-
dencies.

A further test was needed to distinguish between
these two mechanisms. The diffusion coefficients of

ot., O were set to those of H2, yielding two fast spe-
S cies. All other conditions were unchanged. This case

again eliminates preferential diffusion; if preferen-
tial diffusion is indeed the mechanism, this flame
should be stable. The diffusional-thermal theory, on

shp the other hand, predicts that because the mass dif-
fusion of the deficient species, H2, remains high,

FiG. 1. Initial and boundary conditions for the two- this flame will be unstable. As Fig. 5 indicates, the
dimensional flame calculations, flame is unstable and closely resembles the stan-



1520) LAMINAR FLAMES FL-AME SHIAPE

I zoo

Fic. 2. Evolution of isotherms in a Fuel-lean hydrogen flame, at 0.0, 0.5, 5.0, 15.0, 30.0. .50.0 nisecs.
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FIC. 3. Evolution of isotherms in a fuel-rich hydrogen flame.
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dard ean-llaiie restiut in Fig. 2. Ih'is, t he' simi- example, to alter its wavelength. This wouhl ad-
lations presti ,ted l ie' stipport the diffiisiinal-ther- dress issues such as the necessary width of t he pe.r-
real theon,' of' cellhlar instalilitv. to rbation relative to the flame thickness to destabilize

lean flames, and the effects of long versus short
wavelengths on the growth and type of instabilities.

Conclusion The computations were very expensive. Each one
cost between four and five hours of CRAY X-MP

A new time-dependent two-dimensional model 2/4 time, which translates to 0.5 ms per point-step.
was used to study the stability of rich and lean pre- Because of the expense, calculations were termi-
mixed laminar hydrogen-oxygen flames with nitro- nated even though it would have been interesting
gen. The model included a detailed chemical re- to follow them longer. We would like to inquire if
action scheme consisting of 24 reversible reactions the structure in Fig. 2 will split into more cells.
among eight species, thermal conductivity, and the The computations were bounded not by computer
individual species diffusion velocities. Four tests memory, but by CPU, with the most time spent in
showed the evolution of perturbed flames: integrating the extensive chemical reactions. One

1) A lean flame, H2:0 2 :N 2/1.5:1:10, possible approach, now that we have been able to
reproduce experimentally observed results, is to2) A rich flame, H2 :O: N2/3.0: 1:16, consider a model with greatly simplified reactions.

3) cie lean flame with the H2 diffusion COf- This appears justified in studying cellular instabil-cients, and ity, since chemistry does not appear to play a major4)chenland f e wrole. The numerical model could be used to test4) Te lean flame with the 02 diffusion coefi- theoretical concepts much less expensively, andeients set equal to the H 2 diffusion coeffc- perhaps less ambiguously.
cients. There are, however, advantages to having the full

The simulations show that one-dimensional lean simulation model. Other phenomena we wish to in-
flame is unstable, and evolves into a pattern resem- vestigate, that occur near flammability limits, might
bling a cellular flame. The rich flame, however, is be very sensitive to the details of the chemical re-
stable; the perturbation dies in time. Both of these actions. The mass diffusivities of light intermediate
results agree with the experiments of Mitani and species, such as atomic hydrogen, might also help
Williams9 for mixtures with the same stoichiome- determine stability. Now that the model exists, we
try. can move in either direction.

The third and fourth calculations attempt to de-
termine the mechanism of the instability, by focus- Acknowledgments
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COMMENTS

G. Joulin, CNRS, France. You didn't say anything tendency of cells to split, as observed in experi-
about the flow field corresponding to the cellular ments. However, we had insufficient resources to
flames; could you comment about that? carry out the simulations further.

Author's Reply. The full equations for the coin-
pressible Naiver-Stokes flow were solved. There was
some vorticity production at the curved flame front; N. Peters, RWTH Aachen, Fed. Rep. of Ger-
however, the flow field was not greatly disturbed. many. In varying the diffusivities of the fuel and

oxygen you have expressed some skepticism in the
* one-step reaction asymptotic results of Barenblatt,

Zeldowich, and Sivachinsky. Recently B. Rogg and
A. L. Kuhl, RDA, USA. You have presented re- myself have extended the asymptotic description to

suits for a single spatial perturbation with a wave- more realistic chemistry for methane flames and find
length equal to the flame thickness. What would be very similar results as for one-step kinetics. This also
the effect of multiple wavelengths, and thus are your seems to confirm the validity of the thermo-diffu-
conclusions sensitive to the initial perturbation as- sional theory as you have demonstrated.
sumed?

Your calculations have only investigated the early- Author's Reply. We have not yet found an ade-
time stability characteristics. Perhaps a more inter- quate one step reaction mechanism for hydrogen
esting problem would be the late-time cellular flame combustion. It would be interesting to compare such
structure, and whether your 2D simulations agree a simplified scheme to our complete reaction mech-
with experiments. Multiple perturbation wave- anism. This would shed light on the importance of
lengths would be needed for that case, and you the details of the mechanism on cellular instability.
should demonstrate that such late-time structure is
independent of the perturbation assumed.

Author's Reply. We have not yet investigated the F. A. Williams, Univ. of California, San Diego,
effect of varying the initial perturbation, we would USA. For your lean flame, I have felt that after some
like to do so. Such investigations will be useful. splittings, the structure will settle down to a num-

The simulation of the lean flame do show the ber of nearly identical cells moving somewhat ir-
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regularly and leaving uiiigiiited gas betweein (if Itan
enough). It would he inter,'Oi', g to carry y,:r iii
tegration to longer tintes to see if this occrs. Is
that possible? R. A. Strehlow, .Iiv. of Illinnois, USA. First hi

me say that I take uo credit for tlie preferential (Iif-
fusion theory. I was oniy'repeating an instant andAuthor's Reply. We do observe the initial spiting reasonable explanation for thme effect in toy text.of the structure and the cooling down of the region Second, please try the case of a fuel lean mixture

between the cells. We need longer calculations to with DH2 = >D 5 . to see if it is unstable.
determine if the structures will settle down to a
certain size. Our calculations were limited by
budgetary considerations. Author's Reply. Thank you, we will.
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EFFECT OF GRAVITY ON FLAME INSTABILITIES IN PREMIXED GASES

G. Patnaik*, K. Kailasanath and E.S. Oran

Laboratory for Computational Physics and Fluid Dynamics
Naval Research Laboratory

Washington, D.C. 20375
*Berkeley Research Associates, Springfield, VA 22150

Abstract the evolutionary process that produces the multidimen-
sional structure. The numerical simulations of flames

Time-dependent, two-dimensional numerical simula - presented here include as input a multireaction mecha-
tions are used to investigate the effects of gravity on nism for hydrogen combustion, molecular diffusion be-
instabilities in laminar, prerixed flames in lean HrO2- tween the reactants, intermediates, and products, ther-
N2 mixtures. The calculations show that the effects of mal conduction, convection, and gravity. Such a de-
gravity become more important as burning velocity is tailed model allows us to investigate the multidimen-
decreased which occurs as the lean flammability limit sional structure of flames and to evaluate the impor-
is approached. In a 1.5:1:10 hydrogen-oxygen-nitrogen tance of various contributing physical processes. We
mixture with a burning velocity of 9.9 cm/s, gravity use the numerical simulations to evaluate the relative
plays only a secondary role in determining the multi- importance of these processes in normal earth gravity
dimensional structure of the flame. The stability and and zero-gravity conditions.
structure of the flame is controlled primarily by the
thermo-diffusive instability mechanism. However, in a The three major instabilities that might occur in
1:1:10 hydrogen-oxygen-nitrogen mixture, in which the premixed flames are: the hydrodynamic instability, in-
burning velocity is 2.0 cm/s, gravity is more important. dependently proposed by Landau and Darrieusl' 2 ; the
Here the upward-propagating flame is highly curved thermo-diffusive instability investigated by Barenblatt
and evolves into a bubble rising upwards in the tube; and Zeldovichs,4; and the buoyancy-induced instability
the zero-gravity flame shows a cellular structure; the generally called the Rayleigh-Taylor instabilitys . Be-
structure of the downward-propagating flame oscillates cause our numerical model of the premixed hydrogen
between structures with concave and convex curvatures flame includes all the physical mechanisms that lead to
towards the unburnt mixture. These observations are these three types of instabilities, it provides an ideal
explained on the basis of an interaction between the test-bed to study these instabilities and their interac-
buoyancy-induced Rayleigh-Taylor instability and the tions.
thermo-diffusive instability. A theoretical dispersion
relation describing the growth rate of a disturbance Hydrodynamic instability was the first kind ofwas evaluated at the conditions of the numerical aim- flame instability studied theoretically. The analyseswas valate attheconitios o th nuerial im- of Darrieus 2 (1938) and Landau' (1944) showed that
ulations. Some of the trends it predicted were correct, o parfe , (1938)eand ada (1944) sotht
but no quantitative agreement was found. However, a planar flame, considered as a density discontinuitythe ideaiized nature of the theory makes comparison of that propagates normal to itself at a constant speed,
its predictions to numerica tresults difficult, is unstable to wavelengths of all sizes with the smallerwavelengths growing faster. Physically, hydrodynamic

instabilities are due to the fluid expansion and can be
I. Introduction expected. to occur in all flames in the absence of stabi-

Instabilities are often observed in propagating flames, lizing mechanisms. The actual existence of this mode of
especially near the flammability limits. In this paper, instability has never been conclusively shown because
we discuss the various types of instabilities that may of the difficulty in isolating and studying such an ideal-
arise in such premixed flames and use numerical simu- ized flame experimentally. This difficulty in observing
lations to isolate and study their properties. The em- hydrodynamically unstable flames suggests that stabi-
phasis of this paper is on the effects of gravity on flame lizing mechanisms are important in real flames. For
instabilities in gases of premixed hydrogen, oxygen, and very small wavelengths that are of the order of the
nitrogen. flame thickness, the hypothesis that a flame can be

treated as a discontinuity is invalid. [n fact, the. phe-
Linear stability analyses can provide information nomenological analysis of Markstein 6 (1951) has shown

on the roles of various processes at the onset of in- that introducing a characteristic length of the order of
stability. However, the prediction of the growth of the flame thickness has a stabilizing effect on the short
this instability to the final form is beyond the scope wavelength modes. It might still be possible to see hy-
of these analyses. Numerical calculations can be used drodynamic instabilities for wavelengths much greater
to help understand both the onset of the instability and

This paper is declared a work of the U.S. Government and
is not subject to copyright protection in the United States.



than the flame thickness, but stable flames have been ity experiments in the NASA drop tower 18 and Lear-
observed in systems with the characteristic dimensions jets1 9. These flames in microgravity are free from any
even a hundred times greater than the flame thick- buoyancy-induced instability, thus making it possible
ness. This suggests that other effects such as buoyancy, to examine experimentally only the thermo-diffusive
stretch, and heat losses play an important role in the instability. Another approach to isolate these instabil-
stability of real flames. ities is by the detailed numerical modelling of flames.

The thermo-diffusive instability mechanism pro- Our numerical simulations of premixed flames con-
posed by Zeldovich4, Barenblatt et al.3 , and tain detailed models of the physical processes that
Sivashinsky7' , invloves a competition between mass dif- cause the various instabilities. Previously we have
fusion of the deficient reactant and diffusion of heat used simulations to show that, in the absence of gray-
in the mixture This instability can lead to the for- ity, cellular structure is caused by the thermo-diffusive
mation of cellular flames. This mechanism assumes mechanism20 . We have shown that this mechanism is
an abundance of the excess component, so that the correct for mixtures sufficiently far from stoichiomet-
extent of the reaction is controlled only by the defi- tic. The goal of this paper is to investigate the effect of
cient component. For a simple one-step reaction in gravity on flame instability and, in particular, to study
what is effectively a single reactant system, this mecha- the interaction between the thermo-diffusive instability
nism predicts the formation of cellular structure when- and the buoyancy-induced Rayleigh-Taylor instability.
ever the thermal diffusivity of the mixture is suffi-
ciently smaller than the mass diffusivity of the reac- II. Multidimensional Flame Model
tant. For lean hydrogen-air mixtures, hydrogen is the
limiting reactant and its mass diffusivity significantly A detailed model of a flame must contain accurate rep-
exceeds the thermal diffusivity of the mixture. In rich resentations of the convective, diffusive, and chemical
hydrogen-air mixtures, oxygen is the limiting reactant processes. The individual importance of these pro-
and its mass diffusivity is nearly the same as the mix- cesses varies from rich to lean flames, and is especially
ture thermal diffusivity. Hence this theory agrees with notable near the flammability limits21 where the exact
early experimental observations9, 10 of unstable lean behavior of these flames depends on a delicate balance
hydrogen-air mixtures and stable rich mixtures. More among the processes. In this section we briefly describe
recent experiments 1 1 2 have shown cellular flames in the algorithms and input data used to model and cou-
some rich and near-stoichiometric hydrogen-air mix- pie the effects.
tures, contradicting this simple theory. The theory hasbeen extended 13 .14 to near-stoichiometric mixtures by The fluid convection algorithm must be able to
beng endedth toe nearfticic mixabundantury maintain the sharp gradients present in flames. Nu-
considering both the deficient and abundant compo- mecayths enshtayipoatnu rcl

nents. mericaly this means that any important numerical
diffusion in the calculation must be considerably less

The Rayleigh-Taylor instability occurs when a than any physical diffusion effect. Many explicit al-
heavier fluid is accelerated into a lighter fluid2 . On gorithms now exist that treat sharp discontinuities in
earth, this acceleration is provided by gravitational at- flow variables accurately, but these methods are ex-
traction. In an upward-propagating flame, the light, trernely inefficient at the very low velocA't;s associated
hot burned material is on the bottom, and the dense, with laminar flames. The Barely Implicit Correction
cold unburned material is on the top, resulting in insta- Flux-Corrected Transport (BIC-FCT) algorithm22 was
bility. In a downward-propagating flame. the light ma- developed specifically to solve low-speed flow problems
terial is on the top, and the Rayleigh-Taylor mechanism with high accuracy. BIC-FCT combines an explicit
stabilizes the system. The physical mechanisms caus- high-order, nonlinear FCT method 23 24 with an im-
ing the thermo-diffusive instability and this buoyancy- plicit correction process. This combination maintains
induced instability can be important simultaneously so high-order accuracy and yet removes the timestep limit
that under certain conditions, this interaction appears imposed by the speed of sound. By using FCT for
to suppress the formation of cellular structure"5 . Di- the explicit step, BIC-FCT is accurate enough to com-
mensional arguments'" and theoretical analysis17 in- pute with sharp gradients without overshoots and un-
dirst* that th' f.tr..:ince of the buoyancy-induced dershoots. Thus .tpurious numerical oscillations that
instability increases as the flame speed decreases, and would lead to unphysical chemical reactions do not oc-
hence is more important when the mixture is near its cur.
flammability limits. Thermal conductivity of the individual species is

There are real mixtures near the flammability modeled by a polynomial fit in temperature to existing
limit for which the thermo-diffusive mechanism and the experimental data. Individual conductivities are then
buoyancy-induced mechanism compete. Cellular struc- averaged using a mixture rule25,

2
s to get the thermal

tures in flames have been observed in the micrograv- conductivity coefficient of the gas mixture. A similar

2



process is used to obtain the mixture viscosity from ical reaction at the flame front flow out at the right.
individual viscosities. heat and momentum diffusion If the inlet velocity is set to the burning velocity of
are then calculated explicitly using these coefficients. the flame, the flame zone is fixed in space and there
In the problem considered in this paper, the timestep is a steady, propagating flame. Thus, the transient ef-
restriction of an explicit method for the diffusion terms fects arising from the ignition process can be eliminated
does not cause any loss in efficiency. and the one-dimensional solution provides a relaxed

Mass diffusion also plays a major role in deter- initial condition for the two-dimensional calculation.
This steady, one-dimensional solution was compared to

mining the properties of laminar flames. Binary mass and found in agreement with a similar calculation with
diffusion coefficients are represented by an exponen- FLAME1D 2 s . The one-dimensional solution was used
tial fit to experimental data, and the individual species to provide the initial conditions for the two-dimensional
diffusion coefficients are obtained by applying mixture calculation. The two-dimensional computational do-

rules25 . The individual species diffusion velocities are maiu was 2 0 cmx 4.5 cm, which was resolved by a

solved for explicitly by applying Fick's law followed by 56 x 96 variably spaced grid. Fine zones, 0.36 mmx

a correction procedure to ensure zero net flux 26 . This 0.15 mm, were clustered around the flame front.

procedure is equivalent to using the iterative algorithm

DFLUX 27 to second order. This method is substan- Flames in a H9:O,:N, / 1.5:1:10 Mixture
tially faster than one that uses matrix inversions and
is well suited for a vector computer. This algorithm a The first calculation is of a zero-gravity flame in a fuel-
also explicit, but because the effective Lewis number lean mixture of hydrogen and oxygen diluted with ni-
of the mixture is close to one, the timestep suitable for trogen, H2:o 2 :N2 / 1.5:1:10, a flame that was clearlyheat conduction is adequate for mass diffusion as well. multidimensional in the experiments in earth gravity

by Mitani and Williams1 2. The initial condition de-
Chemistry of the hydrogen-oxygen flame is mod- scribed by Fig. I is perturbed by displacing the center

elled by a set of 24 reversible reaction rates describing portion of the flame in the direction of the flow. The
the interaction of eight species, H2 , 02, H, 0, OH, frames in the top half of Fig. 2 show isotherms just
HO 2, H2 0 2 , H2 0, and N2 is considered a nonreacting after the perturbation and then their evolution at sub-
diluent 2S. This reaction set is solved at each timestep sequent times. The isotherms indicate that the temper-
with a vectorized version of CHEMEQ, an integrator ature increases in the center portion of the flame which
for stiff ordinary differential equations29 . Because of is convex to the flow and decreases in the the two adja-
the complexity of the reaction scheme and the large cent concave regions. This indicates that the reaction
number of cells in a two-dimensional calculation, the progresses more vigorously in the convex region, a con-
solution of the chemical rate equations takes a large clusion corroborated by the intermediate species (OH)
fraction of the total computational time. A special ver- number-density contours shown in the bottom half of
sion of CHEMEQ called TBA was developed to exploit Fig. 2. Figure 2 also shows that the concentration of
the special hardware features of the CRAY X-MP vec- OH increases in the convex region and decreases in the
tor computer. concave regions. Also, the burning velocity in the con-

vex region appears to be slightly highe. than in a pla-
All of the chemical and physical processes are nar region, while in the concave regions the burning

solved sequentially and then are coupled asymptoti- velocity has noticeably decreased. We conclude that
cally by timestep splitting . This modular approach in this lean mixture, a planar flame is unstable and a
greatly simplifies the model and makes it easier to tetcellular structure has appeared by
and change the model. Individual modules were tested the time the calculation was terminated.
against known analytic and other previously verified
numerical solutions. One-dimensional predictions of Figure 3 compares this zero-gravity flame to flames
the complete model were compared to those from the propagating upward and downward in this same mix-
Lagrangian model FLAMElD which has been bench- ture, so that the flames are propagating opposite to
marked extensively against theory and experiment2" .  and in the direction of gravity. Initially (up to 20 ms)

all of these flames are similar; they are clearly cellu-

I1. Results lar with noticeable though not very significant differ-
ences. The thickness of the flame is affected by gravity,

Initial conditions for the two-dimensional calculations with the upward-propagating flame being thicker than
were obtained by performing a one-dimensional calcu- the downward-propagating flame. The figure also in-
lation to provide the conditions for steady, propagat- dicates that the upward-propagating flame transitions
ing flames. Figure 1 describes schematically the con- to a cellular flame more rapidly than the downward-
figuration under study and gives the boundary con- propagating flame, and the zero-gravity results are in-
ditions of the computational domain. Fresh unburnt termediate. These observations suggest that buoyancy-
gas flows in from the left, and the products of chem- induced instability enhances the growth of the initial
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disturbance in the upward-propagating flame and re- larger flame thickness corresponds to a slower flame3 l .
tards the growth in the downward-propagating flame. With further dilution and perhaps for later times even

at this dilution, these results suggest that the cen-
The fact that a planar flame is unstable in all three tral portion of the flame might break away and rise

cases and evolves to a cellular structure -s consistent as a bubble. Experimental observations of such a phe-with our previous results that show that cellular struc- nmnnhsbe bevdna h enfamblt
tureis ue o athemo-iffsiv intablit mehansm. nomenon has been observed near the lean flammabil ty

ture is due to a therro-diffusive instability mechanism, limit3 2 . The effects of heat and radical losses to the
Our current calculations show that in this mixture, the walls might also play a role in the actual extinction of
effect of buoyancy through the Rayleigh-Taylor insta- these flames.
bility is not substantial. In the case of downward prop-
agation, if the mixture were not prone to cellular in- Downward-Propagating Flames. The long-term
stability, we would expect the buoyancy-induced insta- evolution of the downward-propagating flame is com-
bility to damp the initial disturbance and return the pared to that of the zero-gravity flame in Fig. 6. The
flame to a planar configuration. zero-gravity flame is cellular and remains so with time.

The downward-propagating flame is nearly planar at
60 ms, develops a concave front towards the unburnt

A similar comparison as in Fig. 3 has been made in mixture by 100 ms, and appears to show a cellular
Fig. 4 for flames propagating in a H2:02 :N2 / 1:1:10 structure again by 200 ms. At an intermediate time
mixture. For this mixture, the differences among the (160 ms), it goes through a nearly planar stage. The
three cases are more dramatic. The zero-gravity case structure changes from 160 ms to 220 ms because a
again shows a cellular structure but with a larger cell planar flame in this mixture is unstable to the thermo-
size than in the previous mixture. At 20 ms, the shape diffusive instability. However, as discussed earlier,
and size of the three flames are comparable. The the buoyancy-induced instability tends to suppress a
zero-gravity flame exhibits a stable cellular structure multidimensional structure for downward-propagating
with little change from 20 to 100 mns. The upward- flames. The flame fronts at later times than shown here
propagating flame becomes more and more curved and would probably show the curvature decreasing and the
the central portion of the flame moves more rapidly flame becoming nearly planar, then the front becom-
than the sides. In this case, the buoyancy-induced ing concave and the cycle repeating itself. Downward-
and the thermo-diffusive mechanisms are both desta- propagating flames in earth gravity sometimes oscillate
bilizing. At 100 ms, the upward-propagating flame ex- near the flammability limits', a behavior characteris-
hibits a bubble-like appearance characteristic of near- tic of waves in fluids stabilized by buoyancy.
limit upward-propagating flames. In downward prop-
agation, buoyancy tends to stabilize and return a per- IV. Discussion
turbed flame to its initial planar configuration. How- The dimensional arguments presented by Williams' 6

ever, at later times, the flame front begins to oscillate and the theoretical analysis of Clavin' 7 indicate that
around its planar configuration. The fact that early in the buoyancy-induced instability becomes more im-
the calculations, at 20 ms, all three flames look alike portant as the flame speed decreases, a result that
suggests that the thermo-diffusive instability is grow- is clear from our numerical results as well. The cal-
ing more rapidily than thr buoyancy-induced instabil- culations for the 1.5:1:10 lean hydrogen flame, with
ity. By 100 ms, the buoyancy-induced instability has a burning velocity of 9.9 cm/s, indicate that gravity
had enough time to strongly interact with the thermo- plays only a secondary role in the evolution of cellular
diffusive instability and in the case of the downward- structure and that the stability of the flame is con-
propagating flame it essentially nullifies the effects of trolled primarily by the thermo-diffusive mechanism.
the thermo-diffusive instability. Some differences in the flame structure can be seen

20 ms after the initial perturbation between upward-tu ward-Pro ratin Flames. In Fig. 5, tempera- propagating, zero-gravity, and downward-propagating
ture and OH concentration profiles are shown at four flames, though later the structures again appear simi-
late times in the evolution of the upward-propagating lar.
flame. The reaction zone, as indicated by OH profiles,
is more vigorous in the center of the flame than near the The 1.5:1:10 mixture, though quite lean, is still
walls. With time, this difference in the reaction rates far from the flammability limit. Therefore, we have
increases and the flame appears to be stretched as the performed computations for a 1:1:10 mixture with a
central portion moves more rapidly than the sides. The still lower burning velocity. In this mixture the ef-
temperature contours substantiate this observation be- fect of gravity was more significant. An upward-
cause they show that the overall thickness of the flame propagating flame is highly curved and evolves into a
is greater at the walls than in the center. For flames bubble rising upwards in the tube. The zero-gravity
in lean premixed hydrogen-oxygen-nitrogen mixtures, a flame shows a cellular flame structure. The structure of
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the downward-propagating flame changes in time, ex- speed of 9.9 cm/s and 2.0 cm/s respectively. 1hysical
hibiting both concave and convex curvatures towards processes included in the model are: fluid convection,
the unburnt mixture. These structures result from the detailed hydrogen-oxygen chemistry, species diffusion,
interplay of the processes controlling the buoyancy- thermal conduction, viscosity, and gravity. The effects

induced instability and the thermo-diffusive instability, of buoyancy-induced instability was found to be small
in the 1.5:1:10 mixture, though its effect on the 1:1:10

In every instance, the effect of an initial pertur- mixture was more dramatic. In this leaner mixture the

bation on a planar front is first to produce a cellular upward propagating flame had the characteristic bub-

structure. Then for later times, buoyancy-induced in- ble shape observed experimentally and the downward

stability tends to make the upward-propagating flame besaeosre xeietlyadtedwwr
stability tednd thmae theward-propagating flame propagating flame had oscillations characteristic of thr

more curved and the downward-propagating flame less Rayleigh-Taylor instability. These results agree with

curved. These observations and the observation that a the theory17 that indicates that the influence of gray-

cellular structure characteristic of the thermo-diffusive ity is greater for lower flame speeds.
instability appears cyclically in the downward propa-
gating case indicates that this instability grows more A comparison of the theoretical dispersion rela-

rapidly than the buoyancy-induced instability. tion which predicts the growth rate of instabilities was
carried out at the conditions in our numerical calcula-

Comparision with Linear Stability Analysis tions. Some qualitative agreement was observed: the

A theoretical analysis combining the effects of the theory predicts the oscillatory behavior in downward

hydrodynamic, thermo-diffusive, and the buoyancy- propagating flames and that the effect of gravity is

induced intstability has been carried out by Peleci and more marked in the leaner mixture. However, some

Clavin34 ,17 . This analysis gives a dispersion relation other theoretical predictions were found to be incor-

for the initial growth rate of a disturbance as a func- rect. The discrepancies may arise from the sensitivity

tion of its wave number. In an attempt to correlate to input parameters or from an unrealistic assumption

the theory's predictions to our numerical results, we in the theory . Even though the comparison of the

have evaluated the growth rate for a disturbance with theory to the numerical calculations is not exact, this

a wavelength of 1 cm at the conditions found in our sim- combined approach is quite promising. Because of the

ulations (see Appendix). The result is that the theory extreme flexibilty of numerical simulations, it is possi-

is in qualitiative agreement with certain but not all of ble to carry out a range of experiments which cannot

the numerical observations. For example, in the 1:1:10 be performed in the laboratory. The numerical simu-

mixture, the theory correctly predicts the oscillatory lations provide the necessary details to verify and im-

behavior found in downward propagation and also indi- prove the theory. A two-way interaction between the-

cates that the effect of gravity would be stronger. The ory and numerical simulation can lead to a step-up in

theory incorrectly predicts that downward propagation the pace of our understanding of flame instabilities.

in the 1.5:1:10 mixture exhibits damped oscillations. Calculations for leaner mixtures are needed to ad-

However, the intepretation of the theory's results dress the actual extinction behavior of upward and

is not straightforward. We have only investigated the downward-propagating flames. Loss mechanism such

growth rate for a 1 cm disturbance, though our ini- as heat and radical losses to the walls as well as radia-

tial disturbance in the numerical simulations was not tion might also play a role in determining the detailed

purely sinusiodal. In addition, we discovered that the extinction behavior of these flames. These effects will

growth rate is sensitive to the input parameters, though be systematically considered in further calculations.

the results presented in the Appendix are evaluated
at the conditions specified by the theory. The theory Acknowledgements
make several assumptions which are unrealistic. For
example, this theory considers only a single chemical This work was sponsored by NASA in the Microgravity

reaction which can be represented by only one acti- Science Program and by the Office of Naval Research

vation energy, which is a poor representation of the through the Naval Research Laboratory. Thanks to D.

hydrogen-oxygen chemistry. The results of the theo- L. Book from the Naval Research Laboratory for his

retical calculations are thus presented in the Appendix help with the interpretation of the dispersion relation.

for a representative range of activation energies.
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k, = 2
_
(  ) The following table gives the value obtained for

L - (1-for k = 27r, which corresponds to a wavelength of I cm.

Negative values of o have not been presented, because
The Markstein length £ is given in terms of the flame this mode is expected to decay rapidly.
thickness d by

Growth Rates for k = 27r

S= (Z(Le 2 1) + 1)d, H2 :0 2 :N 2 / 1:1:10

where Ze is the Zeldovich number, and Le the Lewis E Upward Zero G Downwaxd
number. 10 103.0 15.8 0.9 -100.0i

The following numerical values were used for the 20 90.1 15.6 2.2 ± 85.8i
physical properties: Dth = 0.293; Le = 0.378; with 30 85.2 15.5 2.7 ± 80.5i
Ph[Pu = 0.265, y = 0.739, d = 0.55 cm, uL = 2.0 cm/s
for the 1:1:10 mixture. The values for p/Pu,7, d, and H2 :0 2 :N2 / 1.5:1:10
uL for the 1.5:1:10 mixture are 0.240,0.760,0.35 cm,
and 9.9 cm/s respectively. Three values of the Ze corre-
sponding to activation energy E of 10, 20, 30 kcal/mole 20 83.1 44.5 -5.4 ± 53.5i
were used. This is the only number for which there is 30 78.2 40.6 2.4 ± 52.7i
no exact correspondence to the numerical model, which
includes a full chemical kinetics mechanism.

Slip

H2T

Inflow Outflow

Slip

Figure 1. Initial and boundary conditions for the two-dimensional flame calculations.
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INTERACTION OF A SHOCK WITH A COMPRESSIBLE VORTEX

Janet L. Ellzey*, Elaine S. Oran, and J. Michael Picone

Laboratory for Computational Physics and Fluid Dynamics
Naval Research Laboratory; Washington, D.C. 20375

ABSTRACT

A fundamental element of compressible turbulence is the interaction of a shock
with a vortex existing in the background fluid through which the shock propagates.
This paper presents time-dependent two-dimensional numerical simulations of a
shock propagating through a compressible vortex. Two cases are discussed: a
strong shock, in the sense that the fluid velocity behind the shock front is approx-
imately the same as the maximum velocity in the vortex; and a weak shock, in
the sense that the fluid velocity behind the shock front is very much less than the
maximum velocity in the vortex. In general, the vortex breaks the initial planar
shock into four curved shocks which appear to merge in time. Meanwhile, the
vortex itself is compressed and distorted by the shock, and the degree to which
this happens depends on the relative strength of the shock and vortex.

INTRODUCTION

A central issue in compressible turbulence is the interaction among shocks
and rotational structures in the flow. Shocks and vortices coexist and interact
in supersonic propulsion systems, aerodynamic systems, and many laser driven
and explosive systems. In some cases, the effects of these interactions on mixing
are of crucial importance. In others, the distortions in the pressure and flow are
important. Sometimes the interactions are short term, such as those when a shock
passes through a vortex, and sometimes there is a continuous interaction between
the shock structure and the generation of vortices in the flow.

When a shock interacts with a vortex, both the shock and the vortex may be
distorted. In this paper, we investigate the changes in the shock structure as it
passes through and interacts with a compressible vortex. In particular, we con-
sider the interaction of a shock with a single, compressible vortex. Isolating this
simple interaction allows us to investigate a single element of the more complex
processes that occur in high-speed compressible flows. This is an extension of pre-
vious work' that focused primarily on the effects that the shock produced on the
vortex, essentially ignoring the later evolution of the shock. The current study is
performed from the macroscopic point of view, using the equations of compressible
fluid dynamics. In this sense, we are confining the study to those effects that can
be resolved macroscopically with a monotone, numerical algorithm with minimal
numerical diffusion.

BACKGROUND

Previous analytical and experimental research on the interaction of a shock
with large-scale structures have shown that both the the shock and the structures
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themselves are distorted in various ways. For example, when a shock passes over
a an inhomogeneity in the flow such as a low-density bubble or a high-density
drop, the vorticity generated at the boundary of the inhomogeneity becomes a
vortex filament pair2' 3. This is consistent with experimental observations of a
shock wave interacting with a flame4. In a highly compressible turbulent flow,
individual vortices may be flattened by the shocks, vortices may be formed behind
the shocks, or vortices may be formed in strong colliding shocks'.

Experiments by Weeks and Dosanjh 6 have shown that when a shock pro-
pogates through an opposing jet, the shock is distorted into a shape that is very
similar to that of the mean fluid velocity profile of the jet. The turbulence has
only a secondary effect on the shock front. In supersonic mixing layers, large-scale
vortical structures coexist with weak and strong shocks, and the interactions are
strongly coupled7' ,8 to the point where it is difficult to decouple the effects in the
interaction.

In addition to the observed changes in the shock front v'hen it becomes curved,
the vortex changes due to its interaction with the shock. In the experiment by
Dosanjh and Weeks 9, a shock was passed over an inclined airfoil and the flow
behind the shock generated a spiral vortex. When the shock reflected and passed
over the vortex, the vortex was compressed into an ellipse with the major axis
equal to the original diameter of the vortex. In addition, the density at the center
of the vortex decreased abruptly. Ting10 constructed an analytical solution to the
governing equations for the transmission of a weak point vortex through a shock
wave. His results give the disturbance pressure behind the shock induced by a
point vortex as a function of location, time, the vortex circulation, and the shock
strength.

NUMERICAL METHODS

1b study the shock-vortex interaction, we solve the time-dependent equations
for conservation of mass, momentum, and energy in two dimensions,

a--+ V -(pv) - 0, (1)

Opv8-7 + V. (Pv) =-VP, (2)

OE
+ V.(Ev) = -V.Pv, (3)

where p is the mass density, v is the fluid velocity, E is the energy per volume,
and P is the pressure. The equation of state is

P=pRT , (5)

and the relation between internal energy per unit volume, e, and pressure, P, is
givenby

P
e = (6)'-1

where R is the gas constant, T is the temperature, and 7 is the ratio of specific
heats.
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This set of equations is rewritten in terms of finite-difference approximations
on an Eulerian grid. The mass density, momentum, and total energy are con-
vected using the latest version of the monotone Flux-Corrected Transport (FCT)
algorithm", LCPFCT 12113 . This is an explicit, finite-difference algorithm with
fourth-order phase accuracy, and it has been used extensively for computations
of time-dependent flows in which it is crucial to maintain accuracy at steep gra-
dients. In particular, the algorithm has been used for simulating the behavior
of a number of flows similar to those described in this paper: shocks and shock-
shock interactions, vortex behavior in subsonic, compressible flows, and for com-
plex shock-vortex interactions in supersonic flows.

One property of the algorithm which is particularly useful in the calculations
presented below is the high-frequency filter inherent in all monotone algorithms.
This has the effect of damping all frequencies that describe features that cannot
be resolved on the computational grid. The filter acts as an effective viscosity,
dissipating the highest frequencies. But because the filter is nonlinear, there is
thus minimal effect on wavelengths greater than five computational cells, and no
effect on wavelengths greater than ten cells. The property greatly increases the
accuracy of the computation for the objects that are resolved. Shocks, however,
are not truly resolved. Their width is determined by the numerical viscosity of the
computation, and because they are physically so thin compared to the computa-
tional grid, in a complex shock-interaction computation, they are at best resolved
with a few computational cells.

The computational domain, shown in Figure 1, is a 20 cm by 10 cm region
resolved by 480 x 240 cells. The grid is uniform and stays fixed throughout the
course of the computation. The typical timesteps used in the calculation are on
the order of 3 x 10 - T s.

At the beginning of the computation, a shock approaches a vortex from the
left. Thus the inflow conditions on the left of the computational domain are de-
termined from normal shock relations for an ideal, planar shock. Two different
shock strengths are investigated in this paper: the strong shock has a Mach num-
ber of 1.5, a pressure ratio between the shocked and background gas of 2.45, and
density ratio of 1.86; the weak shock has a Mach number of 1.05, a pressure ratio
of 1.1196, and a density ratio of 1.0839. In both cases, the ambient, background
pressure and density are P. = 1.01 X 106 dynes/cm 2 and po = 1.14 x 10- 3 g/cm 3,
respectively.

There is a single vortex rotating counterclockwise centered at z = 7.75 cm,
y = 5 cm in front of the shock. The velocity field of the vortex consists of two
regions: an inner region where the velocity is described by solid-body rotation of
the form

v(r) = -7,X (7)
ri

and an outer region where the velocity decays to zero according to

B
v(r) = Ar+- . (8)

where Vmx is the maximum velocity, occuring at r = ri, and approximately equals
230 m/s for the all cases presented in this paper. The constants A and B are
chosen such that the velocity matches that determined by Eq. (7) at r = r, and
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decays to zero at r = r 2. The inner radius, r1 , is 0.75 cm and the outer radius,
r2 , is 1.75 cm. Tests in which the inner and outer radii were varied did not
show qua'1 tatively different behavior in the structure of the shock and vortex
from the results presented in this paper. The top, bottom, and right boundaries
are reflecting walls, representing a perfectly smooth, reflecting chamber with no
losses to the walls.

RESULTS OF THE COMPUTATIONS

The computations performed with different shock strengths represent two
classes of shock-vortex interactions: weak-shock behavior and strong-shock be-
havior. In the results described below, the velocity behind the weak shock is much
less than the maximum velocity in the vortex, and the velocity behind a strong
shock is about the same as the maximum velocity in the vortex.

Figure 2 shows a time sequence of contours of the pressure difference, P - P
for a computation of the weak shock with Mach number 1.05. Contours cover a
time span from the beginning of the computation, step 0, time 0.0 s, to a time well
after the shock has passed through the vortex, step 800 at 0.34 ms. The maim um
velocity of the vortex is approximately 230 m/s and the fluid velocity behind the
shock is 27 m/s.

At step 200, the shock is diffracted around the vortex. Emerging from the top
of the vortex is a shock that is curved at the top of the vortex, but straightens out
quickly in the ambient gas. Emerging from the bottom of the vortex is a shock
that is also curved, but which also straightens out as it propagates through the
background gas. This is consistent with the fact the background velocity in the
top half of the vortex is in the opposite direction from the direction the shock is
propagating, it is in the direction of propagation in the bottom half of the vortex.
Therefore, the background fluid impedes the shock in the top half of the vortex
and advances the shock in the bottom half. At step 250, the two curved, diffracted
fronts meet at a point at the top of the vortex and a pressure peak forms. The
diffracted shocks are then reflected and propagate outward.

Meanwhile, the shock itself continues to propagate at an overall velocity ap-
proximately equal to its original velocity. The shock is still not a uniform planar
shock at the end of the computation, but is Ftill slightly curved. At step 500, the
upper trailing wave reflects from the top boundary and at approximatly step 700,
the lower trailing wave reflects from the lower boundary. The vortex is circular
except for the brief time that the trailing shocks are interacting at the vortex edge.
At this time, the vortices are deformed slightly but they recover their shape by
time step 450. The vortex itself is not significantly affected by having felt the
shock, whereas the shock remains affected by the vortex for sometime.

Figure 3 shows a time sequence of pressure-difference contours for a strong
shock, Mach number 1.5, propagating over a vortex. The major difference now is
that the vortex is significantly affected by its interaction with the strong shock
because the fluid velocity behind the shock is on the order of that in the vortex,
approximately 230 m/s. Immediately after the shock has passed over the vortex
pair, the vortex is still essentially circular, and the pressure contours have the
same general shape they did before the shock but the interaction with the trailing
diffraction shock steepens the pressure gradient on one side of the vortex. In
a steady-state axisymmetric vortex, the pressure gradient, dp/dr, balances the
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centripetal force, pv8/r. When the local pressure field of the vortex is distorted,
this balance is perturbed and the velocity, density, and pressure field readjust to
a new steady state.

In this strong-shock case, the maximum velocity increases from an initial
value of approximately 230 m/s to 280 m/s at time step 250 when the shock has
just passed over the vortex pair. This acceleration of the vortex occurs because its
radius is compressed by the shock and since angular momentum is conserved, the
velocity increases. It is not, however, stable in this new configuration. Examining
the density shows that the density gradient from the center to the outer edge of
the vortex is steepened as the shock passes.

There are, however, fewer long-term effects of the vortex on the shock. The
initial structure that the shock has as it leaves the vortex quickly decays, leaving
an elliptical vortex behind. The shock structure is similar in Figures 2 and 3
between steps 300 and 500, but because the shock is stronger, it more quickly
approaches its initial planar configuration and the strength of the reflected shocks
dies.

DISCUSSION AND CONCLUSIONS

The interaction of a shock with a vortex existing in the background fluid
through which the shock propagates is a fundamental element of compressible
turbulence. In this paper, we have shown the results of time-dependent two-
dimensional numerical simulations of a shock propagating through a compressible
vortex for two limiting cases: a strong shock, in the sense that the fluid velocity
behind the shock front is approximately the same as the the maximum velocity
in the vortex; and a weak shock, in the sense that the fluid velocity behind the
shock front is very much less than the maximum velocity in the vortex.

In general, the vortex breaks the shock up into four shocks which appear to
merge in time and return to the original planar form. Meanwhile, the vortex itself
is compressed and distorted by the shock, and the degree to which this happens
depends on the relative strength of the shock and vortex. When the shock is
strong, it recovers quickly from the interaction with the vortex. The vortex itself
is highly compressed and distorted into an elliptical shape, and its rotation rate
consequently increases. When the shock is weak, the shock takes longer to recover
from the interaction. The vortex is initially distorted by the shock, but quickly
regains its initial spherical shape and there is little change in its rotation rate.

The change in shape and velocity of the shock can be understood based on
local interaction of the vortical fluid and the shock. When the vortical fluid is
moving in the direction of the shock propagation, the shock velocity increases;
when the vortical fluid is moving in the opposite direction from that of the shock
propagation, the shock slows down. This almost obvious result is seen both in our
simulations and in experiments9 .
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Reaction Rate A(a) B C(-) Source

H + HO 0 0 + H2  1.40(-14) 1.00 3.50(+03) [23]

3.00(-14) 1.00 4.48(+03) [23]

H + HO 2  H2 + 02 4.20(-11) 0.00 3.50(+02) [23]

9.10(-11) 0.00 2.91(+04) [23]

H + HO2 = HO + HO 4.20(-10) 0.00 9.50(+02) [23]

2.00(-11) 0.00 2.02(+04) [23]

H + HO2  0 0 + H20 8.30(-11) 0.00 5.00(+02) [24]

1.75(-12) 0.45 2.84(+04) k, = k/Kc

H + H202  H02 + H2 2.80(-12) 0.00 1.90(+03) [23]

1.20(-12) 0.00 9.40(+03) [23]

H + H20 2 = HO + H20 5.28(-10) 0.00 4.50(+03) [23]
3.99(-10) 0.00 4.05(+04) k, = kf//x

HO + H2 - H + H2 0 1.83(-15) 1.30 1.84(+03) [25]

1.79(-14) 1.20 9.61(+03) [25]
HO + HO H H2 + 02 1.09(-13) 0.26 1.47(+04) kf = kK,

2.82(-11) 0.00 2.42(+04) [26]

HO + HO 0 0 + H20 1.00(-16) 1.30 0.00(+00) [25]

3.20(-15) 1.16 8.77(+03) k, = kf/K
HO + HO2 2 H2O + 02 8.30(-11) 0.00 5.03(+02) [27]

2.38(-10) 0.17 3.69(+04) k, = kf/K

HO + H202 HO2 + H2 1.70(-11) 0.00 9.10(+02) [23]

4.70(-11) 0.00 1.65(+04) [231
H02 + H2 HO + H2 0 1.20(-12) 0.00 9.41(+03) [26]

1.33(-14) 0.43 3.62(+04) k, = kf/K,

Table 3.1 Chemical Reaction Rates for H2-02 Combustion:

k = ATs exp(-C/T)(b)

(") Exponentials to the base 10 are given in parentheses: 1.00(-10) = 1.00 x 10-1° .

(b) Bimolecular reaction rate constants are in units of cm3 / (molecule s).
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React'on Rate A(-) B C(
a

)  Source

H0 2 + HO 2  H202 + 02 3.00(-11) 0.00 5.00(+02) [24]

1.57(-09) -0.38 2.20(+04) kT = kf/ K1

O + HO , H + 02 2.72(-12) 0.28 -8.10(+01) kf = kTK

3.70(-10) 0.00 8.45(+03) [23]

O + HO 2 - HO + 02 8.32(-11) 0.00 5.03(+02) [27]

2.20(-11) 0.18 2.82(+04) k,. = kf/K

O + H202 H 120 + 02 1.40(-12) 0.00 2.12(+03) [24]

5.70(-14) 0.52 4.48(+04) k, = kf/K
0 + H202 HO + HO 2  1.40(-12) 0.00 2.13(+03) [241

2.07(-15) 0.64 8.23(+03) k,. =,:f/K,

H + H + M H2 + M 1.80(-30) -1.00 0.00(+00) [23]
3.70(-10) 0.00 4.83(-04) [231

H + HO + M H20 + M 6.20(-26) -2.00 0.00(+00) [23]

5.80(-09) 0.00 5.29(+04) [23]
H + 02 + M H02 + M 4.14(-33) 0.00 -5.00(+02) [231

3.50(-09) 0.00 2.30(+04) [23]
HO + HO + M H202 + M 2.50(-33) 0.00 -2.55(+03) [23]

2.00(-07) 0.00 2.29(+04) [231
0 + H + M HO + M 8.28(-29) -1.00 0.00(+00) [28]

2.33(-10) 0.21 5.10(+04) k, = k//

0 + HO + M H02 + M 2.80(-31) 0.00 0.00(+00) [281

1.10(-04) -0.43 3.22(+04) k, = k//K,
0 + 0 + M V 02 + M 5.20(-35) 0.00 -9.00(+02) [23]

3.00(-06) -1.00 5.94(+04) [23]

Table 3.1 Continued Chemical Reaction Rates for H2-0 2 Combustion: k, =

AT' exp(-C/T)(b)

() Exponentials to the base 10 are given in parentheses: 1.00(-10) = 1.00 x I0 - '.
(b) Bimolecular reaction rate constants are in units of cm3 / (molecule s).
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n ~ 26t [Q ~q+ F,°1
rlf = a ' 5 (Stiff) (3.7)

4 + 6t [LI + L1] '
n - 2Qi (Equilibrium) (3.3)

L + L?

The original CHEMEQ report [9] describes the details of the timestep selection
algorithm, stiffness criterion, and other important details. A detailed report on
TBA [29] is currently under preparation.

3.2 Data-Handling Algorithm

TBA is designed to handle a large number of cells, each with an independent

timestep. Thus, each cell is integrated with a different number of subcycles. Cells

have to be constantly shuffled in and out of the iategration routine. Whenever the
integration of a cell is complete, it is put onto a list. At the end of the integration
loop, this list is passed to another routine, CDATA, which stores the results and

inserts new cells to be integrated into the places left by the .ompleted cells. To-

wards the end of the integration procedure there are no additional cells to integrate
and the arrays in the integrator will be only partially filled. When this occurs, we

sort and move all completed cells to the ends of the arrays where they will not be
integrated further. When the integration of the remaining cells is complete, all the
data is written out in one operation. Thus we avoid both unnecessary shuffling and

unnecessary calls to CDATA. The sort algorithm developed spec:ficially for this ap-
plication is O(N) and makes the minimum number of swaps. The sort is optimized
by the use of CRAY assembly routines that make bitwise comparisons.

In the original VSAIM routine, all equations passed through one integration
lool, where they were tested for stiffness by if statements and either the stiff or
normal calculations were performed. The CRAY X-MP vectorizes if statements
by performing the calculations for both possibilities and then throwing away the

results for the false condition, so this approach is wasteful. TBA creates index
arrays for different types of equations and sets up a sepai ate integration loop for

each o4 the three types. This approach succeeds due to the speed of the CRAY

X-MP gather/scatter hardware.
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3.3 Programming Strategies

Many strategies or tricks were used to enhance the speed of TBA, most of which

are in what is considered extremely poor programming style, but reflect certain

idiosyncracies of CRAY programming in general. Some are documented in CRAY

manuals, especially the Optimization Guide [30].

For example, many of the arrays are equivalenced as both one- and two-dimen-

sional arrays. The CRAY will only vectorize the innermost nested loop, so wherever

possible we looped over the one-dimensional equivalent array, to avoid an outer loop.

Working space for TBA is supplied in a common block, as this proved substantially

faster than passing it through the argument list in the calling sequence. Memory

access is the bottleneck on the CRAY so scalar temporaries are used to reduce

memory traffic. A full 50% speed up was achieved through their use. A power of

two as the number of species results in memory conflicts that slow the program

considerably. There are eight (23) chemical species in FLIC which would result in

very poor performance. Thus a "dummy" species was put in, removing the memory

conflict.

The following code fragment illustrates the importance of large vector lengths.

Note that if the order of the loops were switched, the if could be taken out of the

inner loop and the memory access made contiguous. However, a much shorter inner

loop results, and the execution time is actually greater.

do 250 iil,numeqns

do 240 jli,numcells

if (convchk(j)) then concent(i,j)=corr2d(i,j)

240 continue

250 continue

These sorts of tricks are higly specific to the CR.,AY X-MP computer and must

be used to gain full advantage of its speed. Though TBA can be transported to

other machines (it was developed on a VAX), it was written specifically for the

CRAY X-MP with its gather/scatter hardware in mind.
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4. Diffusive Transport Processes

The diffusive transport processes currently included in FLIC are molecular diffusion
including the Dufour effect, thermal conduction, and viscosity, all processes that are
crucial for describing flame structure. As yet, we have have not included the thermal
effects on mass diffusion (thermal diffasion or the Sorer effect), thermal dissipation
due to viscosity, or radiation transport. Although it is a second-order effect, thermal
diffusion may become important for near-limit flames and so should be included in
the future. Thermal dissipation is negligible at the extremely low Mach numbers
in the flows under consideration. Radiation effects are important in many flames,
particul.rly hydrocarbon flames that form soot, but is not particularly important

in hydrogen flames.

The differential equations describing these diffusive processes have been solved
with a two-dimensional, explicit Eulerian scheme. Spatial derivatives have been ap-
proximated by central differences and a simple forward-Euler time marching scheme

has been used for time advancement. This explicit method has a timestep limit
roughly equal to the timestep required by BIC-FCT for the fluid convection. How-
ever, each diffusive transport process has its own stability condition, and on oc-
casion it can require a timestep up to five times smaller. When this is the case,

the approach we have taken is to subcycle the integration for that process. The
alternate approach would be to use an implicit algorithm for selected terms, but
this is generally more expensive than subcycling when fewer than ten subcycles are

required.
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4.1 Mass Diffusion

The part of the species conservation equations for species number density that

describes mass diffusion are

a n,,- n k k , n k = ,...n,p , (4.1)

subject to the constraint

EvYk "=0. (4.2)
k=1

The effects of molecular diffusion in the energy equation (Dufour effect) appear as

- = -V- ( nkhkf) , (4.3)

where hk is the temperature-dependent enthalpy for each of the species. The values

of {Vk} are found by solving [31]

Sk = Z (v.- V)= VXk, (4.4)
J1,Dki~ih

subject to
nt.,

S =, (4.3)
k=1

and Eq. (4.2), where Xk and Y1 are the mole and mass fractions of species k.

The exact solution of this equation for the set {Vk} can be obtained by solving the
matrix equation implied by Eq. (4.4).

To avoid solving the full matrix equation at each location at each timestep, we

find an approximation to the {Vk} using Fick's Law and then correct this by the
procedure described by Coffee and Heimerl [321 to ensure that the constraint Eq.
(4.2) is met. The diffusion velocity according to Fick's law is

iv 1k = Dk, V.Yk (4.6)

where Dk, is the diffusion coefficient of species k in the mixture of gases. Equation

4.6 determines the diffusion velocities to within a constant. We then assume that a
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constant Vc is added to all the raw diffusion velocities Vk and require that the sum
of the diffusion fluxes equal zero. Thus,

n'P nsp

EYkVk= E Yk ( Vk + V)= (4.7)
k=1 k=1

leads to n,,,

V= Yk Vk (4.8)

The component of the corrected diffusion velocity defined by

Vk=k + V (4.9)

is then used in Eq. (4.1).

The set of {VI} found in this way is algebraically equivalent to the first itera-

tion of the DFLUX algorithm [121, an approach based on a matrix expansion that
converges to arbitrary order. Values of {Vk} obtained by the procedure described

above were compared to the results of DFLUX to check their accuracy. The explicit
finite differencing used to solve Eq. (4.1) has the numerical stability limit,

max.(DkAt/Ax2) < 1/2.

Generally the mass-diffusion algorithm is subcycled within an overall timestep de-
termined by the convection algorithm. However, the code is designed to decrease
the overall timestep to below that required by the mass-diffusion stability limit if
the number of subcycles required exceeds a specified maximum value. Subcycling

becomes necessary when the temperature of the reacting flow becomes high and the
diffusion coefficients increase accordingly.

Determining the diffusion velocities by Eq. (4.6) requires as input the set of dif-
fusion coefficients of species k into the mixture, {Dkm }. However, these quantities

are difficult to obtain from first principles and are usually found by applying a mix-
ture rule to the individual binary diffusion coefficients. Binary diffusion coefficients

can ben "timated theoretically [331 and sometimes measured experimentally [33,341.
Here we use the same approach as in FLAMEID (Kailasanath et al. [221). Binary
diffusion coefficients are expressed in the form

DkI= Ak ' (J

-. • iiiiI I



0 H2  OH H20 02 HO2  H20 2  N2

H 6.30(17) 8.29(17) 6.30(17) 6.70(17) 6.70(17) 6.70(17) 4.43(17) 6.10(17)
7.28(-1) 7.28(-1) 7.28(-1) 7.28(1) 7.32(-1) 7.32(-4) 7.28(-1) 7.32( 1)

0 3.61(17) 1.22(17) 2.73(17) 9.69(16) 9.69(16) 1.57(17) 9.69(16)
7.32(-1) 7.74(-4) 6.32(-1) 7.74(-1) 7.74(-1) 6.32(-4) 7.74(-1)

H2  3.49(17) 6.41(17) 3.06(17) 3.06(17) 4.02(17) 2.84(17)
7.32(-4) 6.32(-I) 7.32(-1) 7.32(-1) 6.32(-4) 7.38(-1)

OH 2.73(17) 1.16(17) 9.69(16) 1.57(17) 9.69(16)

6.32(-4) 7.24(-1) 7.74(-1) 6.32(-1) 7.74(-1)

H2 0 2.04(17) 2.04(17) 1.57(17) 1.89(17)

6.32(-1) 6.32(-4) 6.32(-4) 6.32(-1)

02 8.74(17) 1.14(17) 8.29(16)
7.24(-1) 6.32(-4) 7.24(-1)

HO 2  1.14(17) 8.85(16)

6.32(-1) 7.74(-1)
H 2 0 2  1.14(17)

6.32(-1)

• TB, &

Table 4.1 Binary diffusion coefficients expressed in the form: Djk = Ajk-. For
each pair of species, the upper term is Apk and the lower term is Bjk, exponentials

to the base 10 are given in parentheses.

where the sets {AkI} and {BkI} are tabulated[221 for each pair of species in the

hydrogen-oxygen reaction system, and are given in table 4.1. These are then com-
bined by a mixture rule [35,361

1-11,
,tp X,

Dkm ,~ 4.11

which provides values of Dk, to use in Eq. (4.6).
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DYNAMICS OF AN UNSTEADY DIFFUSION FLAME:
EFFECTS OF HEAT RELEASE AND VISCOSITY

J.L. Elzey* , K.J. Laskey** and E.S. Oran

Laboratory for Computational Physics and Fluid Dynamics
Naval Research Laboratory

Washington, D.C. 20375

Abstract

Experiments in jet diffusion flames have shown that the flow field consists of two

types of instabilities. Low frequency instabilities form in the outer region of the flow

field and high frequency structures form at the interface between the high and low
velocity fluid. In this paper, we investigate the effects of heat release and viscosity

on the development of the high frequency structures. In our computations, the

conservation equations for mass, momentum, energy, and species axe solved using

Flux-Corrected Transport (FCT), which is an explicit, finite-difference technique for

solving generalized conservation equations.. The system of equations is closed with

an ideal gas equation of state. Recently, the FCT algorithm has been extended to

lower speed flows by including an implicit correction step which allows a much larger

time step. The viscous diffusion, mass diffusion, and conduction terms are solved

independently, and a simplified reaction model is used to represent the reaction of

fuel and oxider. We simulate an axisymmetric 1 2-N 2 fuel jet which is surrounded by

coflowing air. The jet velocity is 10 m/s and the air velocity is 15 cm/s. The results

indicate that heat release delays the formation of large-scale instabilities. Once

formed, the structures are weaker than in the nonreacting case. When viscosity is

included in the calculation of the reacting jet the fluctuations in the flow field are

reduced substantially and the flame appears almost laminar.

Introduction

Visualizations of jet diffusion flames show that both low frequency and high

frequency structures develop in the flow field (1,2). The low frequency (10-15 Hz)

* Berkeley Research Associates, Springfield, VA
** Grumman Space Station Program Support Division, Reston, VA
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oscillations appear to be buoyancy-driven and form in the low-speed fluid outside the
mixing region due to the temperature gradients associated with heat release. These

structures, which have been observed in both experiments (1-3) and computations

(4) are only weakly affected by changes in jet velocity or fuel composition.

The high frequency structures are Kelvin-Helmholtz instabilities which form at
the interface between the high and low velocity fluid with typical frequencies of a
few hundred Hertz. Previous research suggests that these structures are affected by
heat release. Mahalingam, et al. (5) used an inviscid, linearized stability analysis to
show that heat release in a low speed diffusion flame shifts the most amplified mode
to lower frequency and reduces the growth rate of the mixing layer. Experiments
on a chemically reacting mixing layer (6) indicate that heat release reduces the
vorticity thickness.

In this paper, we present time-dependent simulations of an axisymmetric H 2 -

N2 jet with coflowing air. Results for reacting and nonreacting jets with and without
viscosity are presented. In these calculations, gravity is not included and the outer
buoyancy-driven structures do not develop. Instead, we focus on the effects of heat
release and. viscosity on the development of the high frequency structures.

Numerical Technique

The computer code developed for this study is based on that developed by
Laskey (7) to simulate jet flames and by Patnaik, et al. (8) to simulate low-speed
premixed flames. The code solves the following conservation equations for mass,
momentum, energy, and species:

5i+V. (pV)=0 (1)

V+ PVV) =-VP- V-.T (2)

n.,+ V. (EV-) =-V.PV_+V.(ICVT)-V.Z": nk ,hk+Q (3)
k=1

On
+V -(nk/) = -V -(nkVk) +Wk, (4)
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where p is the density, V is the velocity vector, t is time, P is pressure, E is the

total energy density, ic is thermal conductivity, T is temperature, nk and hk are the

number of molecules and enthalpy of species k per unit volume, 1,k is the diffusional

velocity vector of species k, Q is the energy released with reaction, and Wk is number

of molecules of species k per unit volume per unit time produced with reaction.

This system of equations is closed by the equation of state

A = nkkT (5)

and the relationship between internal energy e and pressure is given by

de = dP/(7 - 1) (6)

where 7 is the ratio of specific heats.

The equations are rewritten in terms of finite-difference approximations on an

Eulerian mesh and then solved numerically for specified boundary conditions. The

accuracy of the solution is determined by the finite difference algorithm, the spatial

resolution set by the computational grid, and the temporal resolution set by the

timestep. In reacting flow problems, there is a wide range of important spatial and

temporal scales. Because it is not possible to resolve phenomena on all of these

scales, the smallest scales must usually be modeled. The basic assumption in most

flow modeling of diffusion flames is that mixing of fuel and oxidizer takes place

much more slowly than the chemical reactions, and therefore, a global reaction

mechanism may be used. However, because a simulation that includes a detailed

set of elementary reaction rates will be possible in the next few years, this program

is designed in a modular form such that more detailed chemistry can be substituted

later.

The conservation equations contain terms representing convection, conduction,

species diffusion, chemical reaction, and viscous effects. In our algorithm, the sep-

arate processes are solved independently. The individual algorithms for the various

processes and the coupling mechanism are described in the next section. A more

detailed description of the method is presented by Laskey (7).

Convection
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The solution to equations (1) - (4) is obtained using the high-order implicit

method, BIC-FCT. The Flux-Corrected Transport (FCT) itself is an explicit, finite-

difference algorithm with fourth-order phase accuracy. Recently, Patnaik et al.

(8) developed the Barely Implicit Correction for Flux-Corrected Transport, BIC-

FCT, for subsonic flows by including an implicit correction step. This technique

is based on the idea proposed by Casulli and Greenspan (9) that only the terms

containing the pressure in the momentum equation and the velocity in the energy

equation must be treated implicitly in order to avoid the sound-speed limitation

on the timestep. BIC-FCT has three steps. In the first step, the conservation

equations are solved explicitly with FCT using a relatively large timestep governed

by the Courant condition on the fluid velocity. In the second step, the energy and

momentum equations are rewritten in terms of a pressure correction, 6p. These

equations can be manipulated such that only one elliptic equation for 6p must be

solved. In the third step, final values of momentum and energy are obtained by

adding the pressure correction terms. Patnaik et al. (10) have incorporated this

algorithm in a two-dimensional flame program to investigate laminar instabilities

in premixed flames.

Molecular diffusion

An algorithm for molecular diffusion has been formulated to estimate the molec-

ular diffusion fluxes without having to solve a full matrix problem. The change in

species concentration for each species k due to molecular diffusion only is

-n- v (7)
8nt

V - VnkVk(7

where Vk is the diffusion velocity calculated using Fick's Law and then corrected

by a procedure described by Kee et al. (11) to satisfy the requirement that the

sum of the diffusion fluxes is zero. This method is algebraically equivalent to the

first iteration of the DFLUX algorithm (12), an iterative approach that solves for

diffusion velocities.

The change in total energy density due to molecular diffusion alone is

8E =-V nnkhkVk. (8)
k=l
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This energy term is calculated during the diffusion algorithm but is added to the

total energy at the end of the time step.

The explicit finite-differencing procedure applied to this term introduces a nu-

merical stability condition, DkmAt/(- l + 1) < 1/2, where Dkm is the diffusion

coefficient for species k diffusing into a mixture. To maintain stability, this con-

dition can require a timestep smaller than that required by the convection, which

could add substantially to the cost of the calculation. To avoid this problem, the

diffusion term is evaluated several times during a convection timestep. This is es-

pecially important if the elevated temperature of the reacting flow results in higher

diffusion coefficients.

Binary diffusion coefficients are calculated from kinetic theory and are in the

following form

DklIk , (9)n

where Ak, and Bk, are dependent on species k and 1. Values for Ak, and Bkl have

been tabulated by Kailasanath et al. (13). The diffusion coefficient of species k in

a mixture of np species is calculated according to

1-Yk
Dkm 1 (10)

where Y is the mass fraction of species k, Xk is the mole fraction of species k, and

Dt,jk is the diffusion coefficient of species k diffusing into species kk.

Thermal conduction

A two-dimensional model has also been formulated to simulate thermal con-

duction. Restricting our attention only to the Fourier conduction term, the energy

equation appears as OE=- V (VT). (11)

As with the molecular diffusion algorithm, the use of explicit finite differencing

introduces a stability limit for the thermal conduction calculation, rAt/pcp( l! +

< 1/2, where x/pcp is the thermal diffusivity. The thermal conduction term

is evaluated several times during each convection time step in the same manner as
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the molecular diffusion term. Thermal conductivities, tr, for the individual species

were calculated from kinetic theory ,-,er the temperature range 300K to 3300K,

and these values have been fit to a third-order polynomial. The mixture thermal

conductivity is then calculated using the expression from Kee et. al (11)

k=11 1
~~~~ XXk I(4

k=1

Viscous stress

An algorithm which calculates the viscous terms in the momentum equation

is included in the program. The momentum transport associated with viscous

diffusion only is

aPV

where

and C is the second coefficient of viscosity and is assumed to equal zero. Equation 15

is rewritten in terms of an explicit finite difference approximation which introduces

numerical stability condition, ,pAt/p(-' + ' ) < 1/2.

The values for Ilk were calculated from kinetic theory over the temperature

range 300 to 3000K and fit to a third order polynomial. The mixture viscosity was

calculated from

n,, Xktuk 
(17)

E- n,

j=1

where lkj is a weighting factor

u Mj (18)
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and Mk is the molecular weight of species k (14).

Model for chemical reaction

Ideally, we would like to simulate the chemical reaction by including a detailed

set of elementary reactions to describe the production of the individual species and

the energy release in the flame. However, the cost of computer time and memory

makes this prohibitive for problems in which the flows axe complex.

In the original flame sheet model proposed by Burke and Schumann (15), the

fuel and oxidizer react completely and are not permitted to coexist. Thus, the flame

is an infinitesimal interface between regions of fuel and oxidizer. In the PDR model

developed by Laskey (7), a single global reaction mechanism is used but the fuel and

oxidizer do not react instantaneously. Instead, the reaction occurs over a finite time

interval. The fraction of fuel which reacts in a particular time step is determined

from a separate simulation for a laminar flame. The reaction rate for the laminar

flame was adjusted such the the maximum temperature was the adiabatic flame

temperature.

Coupling

A complete solution to the governing equations requires solving the terms for

individual processes as well as accounting for the interaction among the processes.

In the calculations presente.d below, we use timestep splitting which assumes that

the net effect of all the processes is the sum of the solutions to individual processes.

This technique is valid if the changes in the dependent variables during a timestep

are small.

In these computations, the changes in internal energy resulting from the indi-

vidual processes are not incorporated into the solution as soon as they are computed,

but instead are accumulated. The entire change in internal energy is then added to

the energy equation in the fluid convection step. The coupling technique has been

described by Oran and Boris (16), and a modification by Patnaik, et al. (176) has

been shown to allow for a greater addition of energy per timestep while maintaining

numerical stability.
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Application of the Model to Jet Diffusion Flames

The initial computational domain and initial conditions for the jet diffusion

flame calculations are shown in Figure 1. The domain is 10 x 67 cm and consists of

128 x 192 cells. Cells of approximately 0.02 cm are concentrated around the jet exit.

Beginning at r = 1 cm, the size of each cell is increased by 0.03% over the size of its

neighboring cell for both simulations of a nonreacting jet and for the simulation of
a reacting jet without viscosity. For the simulation of a reacting jet with viscosity,
the cell size is stretched by 0.05% to increase the size of the domain to 27 x 67 cm.

The cells in the axial direction for all simulations are stretched by 0.03% starting

at z = 1 cm.
A fuel mixture consisting of 78% H 2 and 22% N 2 flows through a jet of radius

0.5 cm at 10 m/s at the lower boundary. Air flows through the outer annular region

between r = 0.5 and r = 10.0 at 15 cm/s. The outer boundary at r = 10.0 is

a free-slip wall. The inner boundary at r = 0.0 is the jet centerline. An outflow

boundary is specified at z = 67 cm.

Results

Nonreacting Jet without Viscosity

Figure 2 shows the instantaneous contours for radial velocity, axial velocity,

and local equivalence ratio. The instability forms approximately 1.5 diameters

downstream of the jet The radial velocity is a maximum ( 500 cm/s) at this point

and decreases downstream. The structures appear fairly symmetrical throughout

their development. Although they are not evident in this plot, there are weak

instabilites at the top of the figure. The contours of local equivalence ratio indicate

that the concentration field is significantly affected by the rotating structures.

Nonreacting Viscous Jet

Figure 3 shows that the viscosity does not qualitatively alter the flow. The

instability forms approximately 1.5 diameters downstream of the jet and weakens

rapidly in the downstream direction. The maximum radial velocity is 300 cm/s

and occurs in the center of the first recognizable structure. The axial velocity field

and local equivalence ratio are similar to the case without viscosity.
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Reacting Jet without Viscosity

When the fuel mixture reacts, the nature of the flow field changes significantly.
The radial velocity contours indicate that the initial instablity still forms close to
the jet, approximately 3 diameters downstream, but it is very weak at this point.

The radial velocity increases downstream and is a maximum ( 80 cm/s) in the center
of the structure at about 10 jet diameters. In addition, the structures are elongated

due to the acceleration at the flame interface.
The lower radial velocity decreases the amount of fluid entraine _d results in

a lower growth rate of the mixing layer. The axial velocity contours show a narrower

mixing layer than in the nonreacting case. The structures have not merged along the
centerline and a large potential core region still exists. The contours of equivalence

ratio show that the stoichiometric surface is shifted radially outward and is outside
the region of intense mixing.

The maximum temperature occurs along the reaction zone and is approxi-
mately 2100 K. A large region around the flame is heated due to conduction. The
temperature field is distorted slightly at the base of the flame. The reaction in this
region is quite intense. As the burned gases are accelerated downstream, coflowing

air is entrained. In this simulation, the outside boundary is a free-slip wall and the
entrainment establishes a weak recirculation zone at the bottom of the domain.

Reacting Viscous Jet

Figure 5 shows that viscosity has a significant effect on the reacting jet. The

magnitude of the radial velocity have been reduced by viscosity. Weak instabili-
ties arestill evident at approximately 5 diameters downstream with a maximum
velocity of 10 cm/s. Further downstream the flowfield appears laminar. There

is a large region of negative radial velocity indicated by dotted lines. The axial
velocity contours show that the mixing region is shifted radially outward by the

addition of viscosity. A potential core of undisturbed fluid is evident along the jet
centerline. The maximum temperature is approximately 2100 K and occurs along

the stoichiometric contour (0 = 1).

Discussion

In these calculations, the Reynolds numbers for the jets without viscosity (Figs.

9



2 and 4) are poorly defined because there is only numerical viscosity which is de-
pendent on the local cell size. The numerical viscosity is clearly lower than the
physical viscosity because the velocity field changes when the viscous terms are in-
cluded. This implies that the effective Reynolds number for the calculations without
viscosity is higher than that for the calculations with viscosity.

The Reynolds number of the nonreacting jet (Fig. 3) is 2100 based on jet
diameter and the properties of the fuel jet. At this Reynolds number, viscous
effects are relatively small. The instabilities are primarily inviscid and viscosity

reduces the maximum radial velocity in the flow field without altering the nature
of the instability. In the reacting jet (Fig. 5), however, the elevated temperature
significantly increases the viscosity which reduces the Reynolds number. At 1000
K, the Reynolds number is 300 and viscous effects are significant.

When reaction is included in the calculations without viscosity (Fig. 4), the
heat release decreases the strength of the vortices and delays their formation. This
agrees with the inviscid analysis by Mahalingam, et al. (5), which shows that heat
release stabilizes the mixing layer. Their work also indicates that the stabilizing
effect of heat release is greater as the mixing layer spreads. This suggests that the

layer becomes more stable further downstream. In our simulations (Fig. 4), the
layer is more stable close to the jet and less stable further downstream. The analysis
cannot, however, be compared directly because the heat release is not uniform in
the axial direction in the calculations. The most intense reaction occurs close to the
jet where pure reactants mix. Further downstream where the reactants are mixed
with products, the heat release decreases significantly.

The calculations which do not include viscosity (Fig. 2 and 4) also agree with
experimental data which show that heat release decreases the layer thickness (6) in
high Reynolds number flows. When viscosity is included, the results are difficult to
compare, because the Reynolds number for the calculations is much less than that

in the experiments.

The calculations in this paper show that heat release stabilizes the flow field
of a H/2 - N 2 diffusion flame. When viscosity is added to the calculation for a
reacting jet, the flow becomes almost laminar. In future work, we will calculate
mean quantities in order to compare to experimental data.
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Figure 1. (a) Computational domain and (b) initial conditions for If, - N, jet calculations. Fig,,ire- th
shows only part of the full computational domain.
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Abstract

A numerical simulation of an axisymmetric confined diffusion flame

formed between a H 2 -N 2 jet and coflowing air at 30 cm/s is presented in this

paper. For the initial computations, the restrictions of the Burke-Schumann

theory are imposed and the results of the computation are compared with

the analytical solution for flame location. For both the underventilated and

overventilated flames, the results of the computations are in excellent agree-

ment with the analytical solution. However, the flame behavior becomes

more complex as the restrictions are relaxed. When variable diffusion coef-

ficients and densities are included in the calculation, small radial velocities

are induced and the flame interface is slightly distorted. When heat release

is included, the flame is shorter and an unsteady mixing region forms at

the fuel-oxidizer interface. The instabilities are damped when viscous ef-

fects are included. Large-scale instabilities form in the oxidizer region with

a frequency of approximately 15-20 Hz when gravity is included in the cal-

culation.

I. Introduction

The analytical work of Burke and Schumann (1) has formed many of

our fundamental ideas about laminar diffusion flames. In the original Burke-

Schumann problem, axisymmetric coflowing streams of fuel and oxidizer flow

through a confined duct, and the velocities, densities, and diffusion coeffi-

cients of the fuel and oxidizer are equal. Reaction is instantaneous, resulting

* Berkeley Research Associates, Springfield, VA

** Grumman Space Station Program Support Division, Reston, VA
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in a flame sheet of infinitesimal thickness in which the reaction rate is ef-

fectively controlled by the diffusion rate. The solution to this problem is an

equation which can be solved for the location of the flame front. In the orig-

inal analysis, Burke and Schumann chose the diffusion coefficients in order

to obtain good agreement with experiments. Later work (2) extended the

theory to describe the flame interface for unequal velocities and diffusion co-

efficients. Further extensions of the theory predict the behavior of multiple,

coupled diffusion flames (3,4).

Many of the restrictive assumptions in the Burke-Schumann analysis

can be removed by a numerical solution of the reactive flow equations. In

particular, there are a number of steady-state numerical solutions that sim-

ulate laminar diffusion flames. Gosman et al. (5) solved the two-dimensional

steady-state equations for a case in which all of the diffusion coefficients were

the same and the Lewis number was unity. Mitchell et al. (6) numerically

simulated steady-state flames with nonunity Lewis numbers but kept the

basic idea of the flame sheet model.

This paper describes a numerical model which is designed specifically

to simulate the nonsteady behavior of axisymmetric diffusion flames. It

contains submodels for finite-rate chemistry, viscosity, thermal conduction,

and the temperature dependence of material properties such as specific heats

and diffusion coefficients. As one of the first uses of the diffusion flame

model, we simulate a Burke-Schumann flame and remove the restrictions

individually. We present results for a classic Burke-Schumann flame with

all of the restrictions included in the analysis and compare to the anlytical

solution. Then we include the following sequentially:

1. Variable density and diffusion coefficients, radial convection, and axial

diffusion,

2. Heat release,

3. Viscous effects,

4. Gravitational effects.
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This set of computations is a benchmark of the model that is currently being

applied to more complex transitional diffusion flames. Although practical

examples of Burke-Schumann flames are not as abundant as turbulent or

unsteady flames, they represent an important class of problems which can

be studied through theory, computation, and experiment.

Besides the applications of the model to the Burke-Schumann problem,

this paper also describes the numerical model in detail. Specific notable fea-

tures of the model are its time dependence, the finite-rate chemical model, the

temperature dependence of the transport coefficients, and the nonunity Lewis

number. The new elements of the numerical model that make such compu-

tations possible are the BIC-FCT algorithm used to compute the convection

and the parametric diffusion-reaction (PDR) model used for the finite-rate

chemistry. These features and algorithms are described in some detail in the

next section of this paper.

II. Numerical Methods and the Model Structure

The numerical model used for this study is based on those originally

developed by Patnaik et al. (7) to simulate low-speed premixed flames and

by Laskey (8) to simulate jet flames . The program solves the equations

for conservation of mass density, momentum, energy, and individual species

number densities:

OP
V+ v (pv) =0 (1)

- - + V.(pvv)=-VP+pG-V.r (2)

a E 
" "

+ V.(Ev)=-V.Pv+V.(VT)-V.Z nkkhk+Q (3)
k=1

+ V.(nkv)=-V.(nkvk)+wk, (4)

with the additional relations

P = nkT, (5)
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and

dc = pc,, dT. (6)

The various quantites used in these equations and throughout this article are

defined in the accompanying Nomenclature.

Equations (1) - (4) contain terms representing convection, thermal con-

duction, species diffusion, chemical reactions, and viscosity. These equations

are then rewritten in terms of finite-difference approximations on an Eulerian

mesh and solved numerically for specified boundary and initial conditions.

The accuracy of the solution is determined by the specific finite-difference

algorithm, the spatial resolution set by the computational grid, and the tem-

poral resolution set by the timestep. There is a wide range of important

spatial and temporal scales in reacting flow problems. Because it is not usu-

ally possible to resolve phenomena on all of these scales, the smallest scales

must be modeled phenomenologically.

However, as computational capabilities and model inputs improve, it

should be possible to replace certain submodels by more accurate or faster

submodels. For example, assuming that the rate of diffusion is much less

than the reaction rate helps justify using a global reaction mechanism. Using

such a global reaction is, however, approximate and we believe that within a

few years it will be possible to include a detailed set of elementary reaction

rates. Therefore, the computer program is designed in a modular form so that

particular submodels can be updated in a relatively straightforward way. In

the computer program, algorithms representing different physical processes

are solved separately and then the results are combined, as summarized

below. More detailed descriptions are presented by Laskey (8).

Convection
The solution to the convective terms in Eqs. (1) - (4) is obtained us-

ing the new algorithm, Barely Implicit Correction to Flux-Corrected Trans-

port (BIC-FCT), that was developed to solve the convection equations for

4



low-velocity flows (9). The Flux-Corrected Transport algorithm itself is an

explicit, finite-difference algorithm that is constructed to have fourth-order

phase accuracy (10). Through a two-step predictor-corrector algorithm, FCT

ensures that all conserved quantities remain monotone and positive. The

FCT procedure is to first modify the properties of a high-order algorithm

by adding diffusion during a convection step and then to subtract out the

diffusion in an antidiffusion phase. In addition, fluxes are limited to ensure

that no new unphysical maxima or minima are added during the convection

process.

However, because FCT is an explicit algorithm, the numerical timestep

required for accuracy and stability is limited by the velocity of sound accord-

ing to the Courant-Friedrichs-Lewy condition, At < min(Ax/c.). To avoid

this restriction, which would make computations of slowly evolving flows pro-

hibitively expensive, the convection equations are usually solved implicitly.

This filters out the sound waves from the equation and, therefore, removes

the sound-speed condition. Patnaik et al. (7) developed BIC-FCT so that

the timestep would be limited by the fluid velocity and not the sound speed.

This implementation has great advantages for computations of slow flows

because one BIC-FCT timestep costs the same as one regular FCT explicit

timestep, but the size of the timestep might be a factor of 50 to 100 times

greater.

BIC-FCT is based on the idea proposed by Casulli and Greenspan (11)

that only the terms containing the pressure in the momentum equation and

the velocity in the energy equation must be treated implicitly in order to

avoid the sound-speed limitation on the timestep. BIC-FCT has three steps.

In the first step, the conservation equations are solved explicitly with FCT

using a relatively large timestep governed by fluid velocity. In the second

step, the energy and momentum equations are rewritten in terms of a pres-

sure correction, 6P. These equations can be manipulated such that only

one elliptic equation for bP must be solved. In the third step, final val-
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ues of momenta and energy are obtained by adding the pressure correction

terms. Patnaik et al. (7) have used this algorithm in a two-dimensional flame

program to investigate laminar instabilities in premixed flames.

The form used for the relation between the change in internal energy

and the change in the pressure, required in the second step of BIC-FCT,

can be derived from Eq. 6 and simplifies under certain assumptions (8). For

example, if all of the constituents have the same temperature dependence,

we can write

d - + (a( - P 1  d(lnn), (7)

where 7 is a mixture quantity. The second term in Equation (7) is dependent

on the change in the local species concentration and is important only in

the reaction zone. In our simplified reaction submodel, we do not include

the intermediate species. Consequently, this term cannot be represented

accurately and we do not include it explicitly. In the reaction zone, we are

primarily interested in representing a finite flame thickness and reproducing

the correct maximum temperature. We calibrate the reaction submodel to

predict a realistic flame temperature and flame thickness without this term

included.

Molecular Diffusion

An algorithm for molecular diffusion has been formulated to estimate

the molecular diffusion fluxes without having to solve a full matrix problem.

The change in species concentration for each species k due to molecular

diffusion is
=k - nvky (8)

where the diffusion velocity, Vk, is calculated from Fick's Law,

1
Vk = -- DkmVXk, (9)

and then corrected by a procedure described by Kee et al. (12) to satisfy

the requirement that the sum of the diffusion fluxes is zero. This method is
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algebraically equivalent to the first iteration of the DFLUX algorithm (13),

an iterative approach that solves for diffusion velocities to optimal accuracy.

The change in total energy density due to molecular diffusion alone is

aE = -- v.ZnkhkVk. (10)
k=1

This energy term is calculated within the diffusion algorithm but is added

to the total energy at the end of the time step.

The explicit finite-differencing procedure applied to this term introduces

a numerical stability condition,

2+ A. ,2(11)

where Dkm is the diffusion coefficient for species k diffusing into a mixture.

To maintain stability, this condition may require a timestep smaller than that

required by the convection condition, which adds substantially to the cost

of the calculation. To avoid this problem, the diffusion term is evaluated

several times during a convection timestep. This is especially important

if the elevated temperature of the reacting flow results in higher diffusion

coefficients.

Binary diffusion coefficients were calculated .from kinetic theory and are

in the following form

DkI = A. TB! , (12)n

where AkI and BkZ depend on species k and 1. Values for AkI and Bk, have

been tabulated by Kailasanath et al. (14). The diffusion coefficient of species

k in a mixture of n8 p species is calculated according to

1-Yk
a- 1 (13)

n ,,

where Yk is the mass fraction of species k, Xk is the mole fraction of species

k, and Dkj is the diffusion coefficient of species k diffusing into species 1 (15).
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Thermal Conduction

A two-dimensional model has also been formulated to simulate thermal

conduction. Restricting our attention only to the Fourier conduction term,

the energy equation appears as

9E
V -. (VT). (14)

As with the molecular diffusion algorithm, the use of explicit finite differenc-

ing introduces a stability limit for the thermal conduction calculation,

ct 1 + 1 (15)

where K/pcp is the thermal diffusivity. The thermal conduction term is eval-

uated several times during each convection time step in the same manner as

the molecular diffusion term. Thermal conductivities, rk, for the individual

species were calculated from kinetic theory over the temperature range 300

K to 3300 K, and these values were fit to a third-order polynomial. The

mixture thermal conductivity is then calculated using the expression from

Kee et al. (12)

k11

Viscous Stress

The momentum transport associated with viscous diffusion only is

8pv_
(17)

where

r= 2 ( v)I- 1 1 [(VV)+(v.)T] (is)
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and C is the second coefficient of viscosity and is assumed to equal zero.

Equation 17 is rewritten in terms of an explicit finite difference approxima-

tion which introduces a numerical stability condition,

yu t ( I2 1 7) <2 (19)

The values for Pk were calculated from kinetic theory over the tempera-

ture range 300 K to 3000 K and fit to a third-order polynomial. The mixture

viscosity is calculated from

naP

n.1 XkPk (20)
k=1 E Xjdkj

j=1

where $kj is a weighting factor

and Mk is the molecular weight of species k (16).

Model for Chemical Reactions

Ideally, we would like to simulate the chemical reaction by including a

detailed set of elementary reactions to describe the production of the individ-

ual species and the energy release in the flame. However, the cost of computer

time and memory makes this prohibitive for simulations of complex flows.

We have, therefore, used the parametric diffusion-reaction (PDR) model that

reflects many of the major characteristics of a more detailed calculation.

In the original flame-sheet model proposed by Burke and Schumann

(1), the fuel and oxidizer react completely and are not permitted to coexist.

Thus, the flame is an interface of infinitesimal thickness between regions of

fuel and oxidizer. In the PDR model developed by Laskey (8), a single global

reaction mechanism, 2H 2 + 02 -+ 2H20, is used but the fuel and oxidizer

do not react instantaneously. Instead, the reaction occurs over several time

steps in the simulation. The heat release rate, Q, is determined from

• • • | 9



Q =-Cqf dt (2

where q! is the heat of combustion, dnf/dt is the reaction rate of the fuel,

and C is a calibration constant.

In a real flame, the increase in temperature in the reaction zone is a

result of the change in internal energy of the local mixture which includes

reactants, product, and intermediates. In our simulation, we do not include

the intermediates and, as a result, the specific heat of the gas is not repre-

sented accurately in the flame zone. Even if we obtain a realistic overall rate

for the global reaction, the temperature in the flame zone is too high unless

we compensate for the inaccuracy in the specific heat.

The two important physical characteristics of the flame zone are the

maximum temperature and thickness. We determined the constant reaction

rate in a one-dimensional transient diffusion flame such that a thin reaction

zone developed. In addition, we adjusted the calibration constant in equation

(22) such that the maximum temperture was approximately the adiabatic

flame temperature for a stoichiometric mixture of fuel and oxidizer.

Coupling

A complete solution to the governing equations requires solving the

terms for individual processes as well as accounting for the interaction among

the processes. In the calculations presented below, we use timestep splitting,

which assumes that the net effect of all the processes is the sum of the so-

lutions to individual processes. This technique is valid if the changes in the

dependent variables during a timestep are small, Table 1 is an outline that

shows the order of the computations during one timestep in the computer

code.

10



Table 1. Outline of Diffusion Flame Code

Initialize Variables
* Increment time

1. Thermal Conduction
Integrate from t to t + At:
Calculate Aei
Do not update any variables
(Subcycle as necessary)

2. Ordinary Diffusion
Integrate from t to t + At:
Only update {ni(x)}
Calculate AE2
(Subcycle as necessary)

3. Viscosity
Integrate from t to t + At:
Only update pv

4. Chemical Reactions
Integrate from t to t + At:
Only update {ni(x)}
Calculate AC3

5. Convective Transport
Integrate from t to t + At:
x direction transport

Update p, pv, E, ni
y direction transport

Update p, pv, E, ni
Implicit correction- update p, e, and E

Staxt New Timestep (go to * above)

Due to different requirements of accuracy and stability, the type of cou-

pling used for lower-velocity implicit calculations is different from that needed

for higher-velocity explicit calculations. General information on these ap-

proaches is described in some detail in Reference (10), Chapter 13. In these

implicit computations, the changes in pressure or internal energy resulting

from the individual processes should not be added into the solution as soon

as they are computed, but instead should be accumulated over the timestep.

11



The entire change in internal energy is then included in the fluid convection

step. The specific coupling technique used in this program (17) allows larger

changes in variables per timestep while maintaining numerical stability.

III. Application of the Algorithm to a Confined Diffusion Flame

The numerical procedure described above was used to simulate several

confined diffusion flames. The geometry used in the calculations (Figure 1)

consists of an inner jet of radius a and an outer annular region between the

jet and the walls at radius b. Typically, fuel flows through the inner jet and

oxidizer flows through the outer annular region. The appropriate boundary

conditions for this geometry are

1. r = 0 is a line of symmetry,

2. r = b is a solid, adiabatic, free-slip wall,

3. z = 0 is an inflow boundary where the concentrations, velocities, and

temperatures of the fuel, oxidizer, and inert are specified,

4. z = z, is an outflow boundary where the pressure is adjusted to equal 1

atmosphere.

For the Burke-Schumann flame, a = 1, b = 2, z, = 10 cm. The com-

putational domain consists of a 32 x 88 grid. The grid spacing is uniform

in the radial and the axial directions. Calculations on finer grids, such as

64 x 176, resulted in smoother flame interfaces but did not change the result

significantly. The computational time step is 1 ms.

For the simulations of a confined diffusion flame without all of the Burke-

Schum ar restrictions, a = 0.5, b = 2.5, z1 = 10 cm. The grid consisted of

64 x 88 cells with fine cells concentrated around the jet exit. In the radial

direction, the grid spacing is approximately 0.02 cm from the centerline to

r = 0.7 cm and then expands gradually to a grid spacing of 0.12 at r = 2.5

cm. In the axial direction, the grid spacing is uniform through the domain

and equals 0.11 cm. A typical timestep is 10 is.

12



Computational Time Requirements

A two-dimensional simulation, which includes convection, chemical reac-

tion, molecular diffusion, viscous diffusion, and conduction, requires approx-

imately 25 ps per grid point per timestep on a Cray Y-MP. The convection

algorithm requires approximately twice the cpu time of either the molecular

diffusion or the viscous diffusion algorithms and four times that of the con-

duction algorithm. The parametric diffusion-reaction flame model requires

insignificant cpu time.

IV. The Burke-Schumann Flame

Burke and Schumann (1) found a solution for a set of equations that give

the location of the flame interface for a laminar diffusion flame under a certain

set of limiting conditions. The Burke-Schumann analysis of the laminar

diffusion flame and a comparison of their analysis to the computatuional

results are presented in this section.

In order to solve the equations, Burke and Schumann invoked a number

of simplifying assumptions:

1. The velocities of the fuel and oxidizer are equal and uniform everywhere,

2. The radial velocity is zero,

3. The densities and diffusion coefficients are equal for all components,

4. Radial diffusion is much greater than axial diffusion,

5. Reaction takes place at an infinitesimal flame sheet.

With these assumptions, the conservations equations can be reduced to a

single species equation which is solved with the following boundary condi-

tions:

1. r = b is a solid wall,

2. r = 0 is a line of symmetry,

3. at z = 0, the compositions of the fuel and oxidizer streams are specified.

The analytic solution to the equation yields the location of the flame surface

as a function of a/b and the initial concentrations of fuel and oxidizer.

13



These assumptions enforce various unrealistic restrictions on the flow

field. If the velocity is uniform across the radius of the tube, then the no-

slip condition cannot be imposed at the wall boundary and, as a result, a

parabolic velocity profile typical of confined flows cannot develop. The as-

sumption of equal densities requires that one mole of fuel reacts with s moles

of oxidizer to form 1 + s moles of product. Finally, in a real flame, the vol-

umetric expansion associated with heat release distorts the one-dimensional

flow resulting in a radial component to the velocity and a nonuniform density

field. Consequently, the heat release and expansion are not considered in the

Burke-Schumann analysis.

Figure 1 shows two general cases that can be solved with the Burke-

Schumann approach: the underventilated flame, which has insufficient oxi-

d:,er for complete burning, and the overventilated flame, which has excess

oxidizer. In the overventilated case, the fuel is completely consumed in the

reaction and the flame surface is closed at the centerline of the jet. In the

underventilated case, the flame surface bends outward and is attached to the

outer wall. The two different cases may be obtained by changing either the

ratio a/b or the composition of the fuel or oxidizer stream.

While the details of most flames cannot be represented realistically by

the results of the Burke-Schumann analysis, the predictions of the analysis

are surprisingly good for steady, laminar flames. In addition, it provides an

analytical result against which to test the numerical model.

Simulation of the Burke-Schumann Flame

For the first cases considered in this study, the ratio of the radii, a/b, is

0.5 (a = 1 cm, b = 2 cm), and the fuel flows in the inside jet and oxidizer flows

in the outside annular region. The velocities of the fuel and oxidizer streams

are uniform and equal to 10 cm/s. The densities of the two streams are equal

but the composition was varied by diluting the fuel or oxidizer stream with

an inert gas. All diffusion coefficients were equal to an equivalent mixture of

H 2 and N 2 diffusing into 02.
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Figure 2 shows a sequence of fuel and oxidizer concentration contours

for the numerical simulation of the Burke-Schumann flame as it evolves from

the initial condition to a steady state. At t = 0, pure fuel exists at r < 1 cm

and an oxidizer mixture, consisting of one part oxidizer and one part inert by

volume, exists at r > 1 cm. Since there is an overall excess of oxidizer, the

fuel and oxidizer interface moves inward during time steps 0 to 1000 because

the fuel is completely consumed in the reaction at the flame surface. In all

cases, fuel and oxidizer do not coexist because the Burke-Schumann flame

sheet model assumes that the reaction goes to completion. At time step 1000

which equals 1 second of physical time, the concentration field has reached

a steady state.

In Figure 3a, the computed contours for 1% of the inlet fuel concen-

tration and 1% of the inlet oxidizer concentration are superimposed on the

Burke-Schumann solution for the flame front. The analytic solution is the

interface between the fuel and oxidizer regions and should correspond to the

zeroth contour for either the fuel or the oxidizer, and it should occur between

the two 1% contours. Figure 3b shows a similar calculation for a fuel mix-

ture of one part fuel and three parts by volume of inert reacting with pure

oxidizer. In both cases, the computed flame front is within one cell of the

analytical solution.

A similar computation was conducted for an underventilated Burke-

Schumann flame. In this case, the inlet jet was pure fuel and the oxidizer

consisted of one part of oxidizer to four parts inert. The steady state fuel

contours are shown in Figure 3c with the analytic solution superimposed. In

this case, the flame bends outward and attaches to the outer wall. Again,

the flame shape and height are within the accuracy of the calculation.

V. Elimination of the Burke-Schumann Restrictions
The restrictions on the Burke-Schumann analysis prevent its application

to a wide range of problems. In this section, we describe how the computed

results are affected by eliminating some of the restrictions in the analysi.
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In these computations, the ratio of the inner to the outer radii is 0.2 (a

= 0.5, b = 2.5) and the inlet velocity is 30 cm/s. The fuel consists of 3.41

parts of H2 to 1 part N 2 by volume and the oxidizer is air.

Introduction of correct stoichiometry, densities, and diffusion coeffi-

cients, but maintaining the conditions of uniform inlet velocity and isother-

mal reaction, required that radial gradients be included. The full system

of equations (1) - (4) were solved for this case and the results are shown

in Figure 4 after 0.4 s. Figures 4a and 4b show the radial and axial veloc-

ity contours and Figures 4c and 4d show the contoirs of fuel and oxidizer

mole fractions. Small radial velocities are induced in the reaction zone even

though heat release is not included. The maximum axial velocity of approx-

imately 35 cm/s occurs about 0.25-0.50 cm from the jet centerline. There

is a region of lower velocity within the fuel-rich zone close to the centerline

which initially consisted of pure fuel mixture. There is only a small region

very close to the inlet which is still pure fuel mixture because product has

diffused across the jet. This diffusion of heavier gases increases the density

in the fuel zone. Because momentum is conserved, the velocity decreases.

The flame interface lies between the lowest fuel and oxidizer contours. The

flame shape is slightly distorted due to the fluctuations in the radial velocity.

So far, heat release from the chemical reaction has not been included,

i.e. Q in Equation (3) is zero. The effects of including heat release are

shown in Figure 5 after approximately 0.3 seconds. The volumetric expansion

associated with the heat release accelerates the flow resulting in maximum

axial velocities of 120 cm/s. The hot gases are accelerated outward in the

radial direction with a maximum velocity of about 9 cm/s (Fig. 5b). The

radial velocity contours show that the flame is not steady but has vortices

which form at the fuel/oxidizer interface. This flame is shorter than that

predicted when heat release is not included in the calculation. The increased

radial velocity provides an additional mechanism for mixing so the reaction

zone is wider and the flame is shorter.
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When viscous effects are included in the calculation, the flow field
changes again and these results are shown in Figure 6. The gradients in

the axial velocity are reduced and the vortical structures are damped. The

concentration and temperature fields are similar to those without viscosity.

This flame is slightly longer than the flame without viscosity because the

radial mixing has been reduced.

In the final simulation, gravitational effects were included. This sim-

ulation includes all effects discussed in the equations (1) - (4). This case

was started from the flame in Figure 6 and the results after 0.25 seconds

are shown in Figure 7 for an upward-facing jet. The radial velocity field

shows large structures which form in the high temperature region near the

jet. These structures convect downstream and change the local concentration

field. The H2 concentration field is not affected by gravity but the 02 con-

centration field has changed. Gravity has a significant effect because there is

a large density difference between the burnt and unburnt gases in this flow.

Figure 8 shows a time sequence of 02 mole fraction contours. In the first

frame, a bulge appears approximately in the middle of the computational

domain and convects upward in frames 2 and 3. By frame 4, the 02 field is

very distorted as the structure convects upward. In the final two frames, the

structure continues to roll up as it convects out the computational domain.

We estimate the frequency to be 15-20 Hz. These structures are similar to

those observed experimentally in unconfined diffusion flames (20-21) and are

often attributed to the effect of buoyancy.

VI. Conclusions

The Burke-Schumann analysis has formed many of our ideas about lam-

inar diffusion flames. This simplified approach describes the global nature of

a confined laminar flame but ignores many of the physical phenomena in real

flames. In this paper, we described a new computer program which includes

these effects. The simulations show details of the flames which cannot be

observed from the analytical solution.
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Introducing variable density and diffusion coefficients for a H 2 - N2 fuel

jet with coflowing air results in small radial velocities. In a flame where

the inlet fuel and oxidizer velocities are equal, heat release accelerates the

gases and produces a mixing region characterized by large-scale instabilities

which are damped by viscosity. The effects of heat release and viscosity are

not included in the Burke-Schumann analysis but they appear to counter-act

each other.

Gravity produces a significant change in the flow field of a confined

diffusion flame. The flame fluctuates in time as the buoyancy-driven struc-

tures convect upward. These low frequency fluctuations obviously are not

represented in the steady state analysis of Burke and Schumann, but these

fluctuations do not change the flame location significantly.

Thus, as the Burke-Schumann restrictions are eliminated, the flame

characteristics change. Realistic stoichiometry, diffusion coefficients, and

densities for a H2 - N 2 flame with coflowing air results in a laminar flame

with only small radial velocities. When heat release is included, vortices form

in the reaction zone but these structures are damped by viscosity. Finally,

gravity induces large-scale structures to form in the region outside of the

reaction zone.

18



Nomenclature

Symbol Definition

c' Speed of sound (cm/s)
c" Specific heat (erg/g-K)
Dik Binary diffusion coefficient between species i and k (cm 2 /s)

ETotal energy density:e + pV2 (erg/cm3 )T o t a l~~~ e n e g y d e s i y : +m

G Gravitational acceleration (980.67 cm/s 2)
h Enthalpy per molecule (erg/molecule)
I Unit tensor (nondimensional)
k Boltzmann constant (1.3805 x 10-16 erg/K)
n Number density ( molecules/cm 3)
P Pressure (dyne/cm 2 )
qf Heat of combustion (erg/molecule fuel)
Q Energy release rate (erg/cm3 -s I )

T Temperature (K)
v Velocity (cm/s)
w Production rate of species (molecules/cm3 s1 )
x Spatial coordinate (cm)
X Mole fraction
y Spatial coordinate (cm)
Y Mass fraction

Greek

e Specific internal energy (erg/cm3 )
7 Ratio of specific heats, cp/c,
K Thermal conductivity coefficient (erg/s-K-cm)
A Coefficient of shear viscosity (poise, g/cm-s)

p Mass density (g/cm3 )
T Viscous stress tensor (dynes/cm 2 )

Superscripts

T Transpose operation on a matrix

Subscripts

m Mixture of species
i, j, k, or I Individual species
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Figure Captions

1. Geometry used for Burke-Schumann calculations showing flame location for typical underven-

tilated or overventilated flame.

2a. Contours of fuel concentration normalized by inlet fuel concentration for overventilated Burke-

Schumann at times (a) 0.0 (b) 0.1 sec (c) 0.4 sec (d) 0.7 (e) 1.0 seconds.

2b. Contours of oxidizer concentration normalized by inlet oxidizer concentration for overventilated

Burke-Schumann at times (a) 0.0 (b) 0.1 sec (c) 0.4 sec (d) 0.7 (e) 1.0 seconds.

3. Comparison of analytical and computed solutions for flame location for three different Burke-

Schumann flames. (a) Pure fuel reacting with I part oxidizer + 1 part inert. (b) One part

fuel + 3 parts inert reacting with pure oxidizer. (c) Pure fuel reacting with 1 part oxidizer +

4 parts inert.

4. Contours of (a) radial velocity (b) axial velocity (c) mole fraction 12 (d) mole fraction 02 for

H2 - N2 diffusion flame without heat release. Dimensions are in cm, velocities are in cm/s.

Dotted lines indicate negative values.

5. Contours of (a) radial velocity (b) axial velocity (c) mole fraction H 2 (d) mole fraction 02 (e)

temperature for H 2 - N2 diffusion flame with heat release. Dimensions are in cm, velocities

are in cm/s, temperature is in K. Dotted lines indicate negative values.

6. Contours of (a) radial velocity (b) axial velocity (c) mole fraction H2 (d) mole fraction 02 (e)

temperature for H2 - N 2 diffusion flame with heat release and viscosity. Dimensions are in

cm, velocities are in cm/s, temperature in in K. Dotted lines indicate negative values.

7. Contours of (a) radial velocity (b) axial velocity (c) mole fraction H2 (d) mole fraction 02

(e) temperature for H2 - N2 diffusion flame with heat release, viscosity, and gravity for an

upward-facing jet. Dimensions are in cm, velocities are in cm/s, temperature is in K. Dotted

lines indicate negative values.

8. Time sequence for contours of 02 mole fraction showing the formation of large structure. The

time interval between each frame is 10 ms.
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1. Geometry used for Burke-Schumann calculations showing flame location for typical
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3. Comparison of analytical and computed solutions for flame location for three different

Burke-Schumann flames. (a) Pure fuel reacting with 1 part oxidizer + 1 part inert. (b)
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ABSTRACT

This paper presents time-dependent axisymmetric numerical simulations of an un-

steady diffusion flame formed between a H12 - N2 jet and a coflowing air stream.

The computations include the effects of convection, molecular diffusion, thermal

conduction, viscosity, gravitational forces, and chemical reactions with energy re-

lease. Previous work has shown that viscous effects are important in these flames

and, therfore, all of the viscous terms in the compressible Navier-Stokes equations

are included. In addition, the resolution is increased so that the large, vortical

structures in the coflowing gas are resolved and the boundary conditions are im-

proved so that the velocity field near the jet is more realistic. Computations with

and without chemical reactions and heat release, and with and without gravity,

are compared. Gravitational effects are insignificant in the nonreacting jet but in

the reacting jet gravity produces the relatively low-freqency instabilities typically

associated with flame flicker. Kelvin-Helmholtz instabilities develop in the region

between the high-velocity and low-velocity fluid when there are no chemical reac-

tions, but heat release dampens these instabilities to produce a mixing region which

is almost steady in time.

* Berkeley Research Associates, Springfield, VA
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INTRODUCTION

Experiments on laminar diffusion flames have shown that gravity affects the flame

length and width as well as its extinction characteristics (1-4). These studies have

been conducted in drop towers and have focused on fuel jets with very low velocities

of less than 50 cm/s. Although these experiments have increased our basic under-

standing of laminar diffusion flames by emphasizing the importance of bouyancy, it

is not clear how to apply these results to higher-velocity flames which are unsteady

or fluctuating. Studying higher-velocity fuel jets from larger nozzles is more difficult

experimentally because the flames can be quite long and the instabilities may not

have time to evolve during a single experiment. Through numerical simulations, we

can examine an unsteady flame with and without gravity in the kind of detail that

is not practical in an experiment.

Two types of instabilities are observed in low-speed diffusion flames (5,6). The

high-frequency structures grow from Kelvin-Helmholtz instabilities at the interface

between the high-velocity and low-velocity fluid and typically have frequencies of

a few hundred Hertz. The low-frequency structures form in the region outside the

flame zone with typical frequencies of 10-20 Hertz.

This paper examines the effect of heat release and gravity on the formation and

evolution of these two types of instabilities by presenting a series of time-dependent,

two-dimensional simulations of an axisymmetric H2-N 2 jet in a coflowing air stream.

The calculations include convection, thermal conduction, molecular diffusion, vis-

cosity, chemical reactions with energy release, and gravitational forces. This model

is based on the one developed by Laskey (7), which includes a new algorithm for

convective transport developed by Patnaik et al. (8). Previously, Laskey (9) pre-

sented computations of diffusion flames of the type presented here and Patnaik et

al. (10) used a similar model to study the stability properties of very low-speed

premixed flames. All of these efforts have tested the various parts of the model and

have given credibility to its overall validity.
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These computations axe different from previous ones reported by Laskey et

al. (9) and Elizey et al. (11) for several reasons. Greater resolution and improved

boundary conditions now allow correct zero-gravity computations. The energy-

release model now properly limits the final temperatures allowed and no longer

produces a strong recirculation zone at the jet exit. Viscosity has been shown to be

very important in diffusion flames at these velocities (11) and is, therefore, included

in all of the calculations presented in this paper.

NUMERICAL METHOD

The numerical model consists of separate algorithms for the various processes, and

these algorithms are coupled by timestep splitting methods. Table I is an outline

of one computatonal timestep. Given a set of initial values for the basic vari-

ables, an approriate computational timestep is estimated based on accuracy and

stability criteria. Then the effects of thermal conduction are evaluated using a two-

dimensional explicit finite-difference model (7). Thermal conductivities, for the

individual species were calculated from kinetic theory over the temperature range

300 to 3300 K, these values were fit to a third-order polynomial, and then are used

to calculate the mixture thermal conductivity (13). Molecular diffusion is included

using an explicit finite-difference formulation. First, the diffusion velocities are cal-

culated according to Fick's law and then corrected (13) to satisfy the requirement

that the sum of the d;*,%ion fluxes is zero. Binary diffusion coefficients, calculated

from kinetic theory (14), are used to compute the diffusion coefficients for a partic-

ular species in a mixture (13). The viscosity coefficients jik, calculated from kinetic

theory over the temperature range 300 to 3000K and fit to a third order polynomial,

were used to compute the mixture viscosity (15). The model for chemical reactions

and heat release is an extension of the Parametric Diffusion Reaction Model (7,12),

which is designed to replace the integration of the full, detailed set of ordinary

differential equations representing the chemical kinetics. A single, global reaction

is used but the reaction is not instantaneous. Instead, the finite reaction rate is
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Table I. One Timestep in the Diffusion-Flame Model

Given Initial Variables
1. Determine Timestep
2. Thermal Conduction

Integrate from t to t + At:
Calculate Ael. Do not update any variables. Subcycle as necessary.

3. Ordinary Diffusion
Integrate from t to t + At:

Only update {ni(x)}. Calculate AC2 . Subcycle as necessary.
4. Viscosity

Integrate from t to t + At:
Only update pi. Calculate Ae3 .

5. Chemical Reactions
Integrate from t to t + At:

Only update {ni(z)}. Calculate Ae4.

6. Convective Transport
Integrate from t to t + At:
x direction transport, then update p, pt7 , E, ni.
y direction transport, then u update p, p7, E, ni.
Implicit correction, then update p, e, and E.

7. Increment Time and go to 1.

determined such that the maximum temperature in a one-dimensional transient

diffusion flame is the adiabatic flame temperature for a stoichiometric mixture of

the fuel and oxidizer. The transport of density, momentum, energy, and individual

species density is accomplished through the high-order implicit method, BIC-FCT

(8). This involves an explicit step, based on the standard FCT algorithm (16), and

then an implicit correction.

The general timestep splitting approach for coupling the various physical pro-

cesses was developed for slow-flow implicit calculations. In these computations, the

change in internal energy resulting from each individual process is not incorporated

into the solution as soon as it is computed, but instead is accumulated, as indicated

by the (e,} in Table 1. The entire change in internal energy is then added to the
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energy equation in the fluid convection step 6. The coupling technique has been

described by Oran and Boris (16), and a modification by Patnaik et al. (17) has

been shown to allow for a greater addition of energy per timestep while maintaining

numerical stability.

In essence, the model solves the time-dependent two-dimensional conservation

equations for mass density, p, momentum, pv, and total energy, E and these are

coupled to models for chemical reactions among the species {ni} with subsequent

heat release, molecular diffusion, thermal conduction, viscosity, and gravitatonal

forces. Additional equations include the perfect gas equation of state and a relation

between the internal energy and the pressure. The specific set of equations and

more detailed discussions of the numerical methods are given in References (7) and

(12).

The computations described in this paper, using the enlarged computational

grid and including all of the physical processes, require 0.7 s/computational timestep

on a Cray YMP. This means that a typical calculation, about 50,000 timesteps,

requires about 10 hours of computer time.

APPLICATION TO UNSTEADY DIFFUSION FLAMES

The computational grid for the region near the jet and the initial conditions are

shown in Figure 1. The full domain is 10 cm x 172 cm and consists of 128 x

224 cells. Cells of approximately 0.02 cm are concentrated around the jet exit.

Beginning at r = 1 cm, the size of each cell is increased by 0.03% over the size

of its neighboring cell for all simulations. The cells in the axial direction for all

simulations are stretched by 0.03% starting at z = 1 cm. A fuel mixture consisting

of 78% H2 and 22% N2 flows through a jet of radius 0.5 cm at 10 m/s at the lower

boundary. Air flows through the outer annular region between r = 0.5 and r = 10.0

at 30 cm/s. The outer boundary at r = 10.0 is a free-slip wall. The inner boundary

at r = 0.0 is the jet centerline. An outflow boundary is specified at z = 172 cm

where the pressure is adjusted to atmospheric.
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RESULTS

Nonreacting Jet

Figure 2 shows the instantaneous contours of axial and radial velocity and mole

fraction late in the simulation of zero-gravity nonreacting jet. Kelvin-Helmholtz

instabilities occur near the jet exit leading to vortical structures that then con-

vect downstream. These structures, which transport fuel and oxidizer radially and

broaden the mixing zone, weaken substantially in the first ten jet diameters. Small

radial velocities, not evident in the contours, still exist at this point. Figure 3

shows the mean and rms velocity for the nonreacting jet at three axial locations.

At z = 0.5 cm, the mixing region is narrow with only small fluctuations of a few

cm/s. At z = 1.0 cm, the instabilities result in large fluctuations across the entire

jet core. By z = 10 cm, there are small fluctuations across the entire jet region.

The results for the nonreacting jet with gravity are not distinguishable from those

for the same jet in zero gravity, and so are not shown here.

Reacting Jet

Instantaneous contours late in the calculation of the reacting jet in zero gravity,

Figure 4, show that the volumetric expansion and the change in temperature have

a significant effect on-tie flow. The radial velocities arise from the expansion at the

flame front but are relatively uniform. The axial velocity and concentration fields

are steady in time. Figure 5, the mean and rms velocity for this case, show that

the mixing region is wider due to the expansion. Fluctuations are insignificant and

not visible on the plot.

Figure 6 shows that gravity changes the flow significantly. Instabilities form

outside the reaction zone in the region with large temperature and density gradients.

The maximum radial velocity is approximately 30 cm/s and occurs at the center

of the structure. The concentration and temperature fields are distorted as these

instabilities convect downstream. The flame front lies at the fuel-oxidizer interface

in the region of maximum temperature and fluctuates in time. Figure 7 shows a

6



time sequence of the H20 mole-fraction contours. In the first frame, a bulge is

developing on the outside of the H 2 0 contours. In subsequent frames, it rolls up

and moves downstream. In the final frame, it is moving out of the domain shown as

the next instability forms below it. These outer, slower-moving vortical structures

occur at approximately 15 Hz.

DISCUSSION AND CONCLUSIONS

Comparisons of the four computations of the 10 m/s 112 - N2 jet into the 30 m/s

coflowing air background shows that gravity and heat release interact substantially

to change the flow. Without chemical reactions and subsequent heat release, gravity

does not noticeably change the velocity or concentation fields. Even though there

are significant density gradients between the H2 - N 2 fuel jet and the co-flowing

air, these gradients occur in a region of relatively high velocity where momentum

effects dominate.

In the reacting jet, there are significant density gradients in the coflow region

where the velocity is low. These gradients are due to the conduction of heat away

from the reaction zone. In this region, the bouyant forces dominate and large

instabilities form. These have been observed in experiments for many years (6,

18-20) and are considered to be responsible for flame flicker.

Volumetric expansion and the effects of changing temperature stabilize the mix-

ing region of the reacting jet. The increase in viscosity with temperature accounts

for part of the stabilization but analytical results show that inviscid instabilities are

also damped by heat release (21). Preliminary computations with constant viscosity

indicate that the stabilization effect due to the change in viscosity with temperature

may be insignificant compared to the effect of heat release. Previous calculations

(11) show that even without including viscosity, heat release reduces the strength

of the Kelvin-Helmholtz instability.

Future computations are proceeding in several different directions. First, we

are considering the downward-propagating diffusion flame and how this differs from
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upward and zero-gravity flames. Second, we are reducing the coflow velocity so that

the computations have the same parameters as recent exeriments at the Air Force

Wright Aeronautical Laboratory. At that point, detailed comparisons will be made

between the computations and experimental results. We are continuing to develop

the energy-release model so that the energy release as a function of temperature

is better represented. Finally, we have been investigating new types of computers

that might allow full-chemistry or three-dimensional computations of such flames.
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Figure 1. Computational domain and initial conditions for the compu-
tations of a H2 - N2 jet into cofiowing air. Note that the figures only
show the part of the full domain with the high resolution.
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A NUMERICAL STUDY OF AN UNSTEADY DIFFUSION FLAME

K.J. Laskey ° , J.L. Ellzey * , and E.S. Oran
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Introduction

Experiments in diffusion flames have shown that the pV
mixing of fuel and oxidizer is strongly influenced by + V (pVV) = -VP - pG (2)
both large and small scale structures. In a steady OE
laninar diffusion flame where the flame interfaceis -+V.(EV) = -V.PV+V. (Vt)
constant in space and time, this mixing occurs only n, (3)
through diffusion of the reactants into the flame zone. - v. E nkVkhk + Q
At higher velocities, the flames are unsteady or fluctu- k=1
ating and the mixing process is more complex. Typ-
ically, the unburnt fuel and oxidizer are entrained by - + V.- (nV) = -V - (nV) + wk (4)
large-scale structures and are then convected into a +(

high temperature region where the length scales are where p is the density, V is the velocity vector, t is
reduced further. Ultimately, diffusive processe mix time, P is pressure, G is the gravity vector, E is total
the reactants on a molecular level where chemical re- energy density, x is thermal conductivity, T is tern-
actions can occur. perature, ni, and hk are the number density and en-

The existence of the large-scale structures has thalpy of species k, and Q and uk are the energy and
been extensively documented for non-reacting mixing species produced with reaction. The ALJF code in-
layers and jet* (1-4]. In jet diffusion flames, Roque- cludes a subroutine which solves all the viscous terms
more et al. [5] have shown that two types of insta- in the compressible Navier-Stokes equations and cou-
bilites, which have very different temporal and spa- pies these to the results of Eqs. (1)-(4). In the results
tial scales, exist in certain flow regimes. The smaller, presented here, however, the viscous terms were not
inner structures, which occur closer to the jet cen- included.
terline, result from Kelvin-Helmholts instabilities in In addition to Eqs. (l)-(4), we also need ther-
shear layers. The larger, outer structures, which form mal and caloric equations of state. The species in-
in the low-speed flow outside the mixing region, are cluded in the analysis are assumed to be ideal gases
believed to be buoyancy-driven and account for the obeying the thermal equation of state,
flickering of diffusion flames. In this paper, we will
simulate the region relatively near the jet of a diffu- P = nkT. (5)
sion flame and investigate the effect of these two types
of structures on the flow field. The internal energy, c, for an ideal gas is a function of

temperature only. For a multicomponent mixture of
Numerical Technique ideal gases, the differential form of the caloric equa-

The Axisymmetric, Low-speed Jet Flame (ALJF) tion of state is

code (6] used for these simulations solves the following P d n '

conservation equations for mass, momentum, energy, de = - ( -dP - .-) + kdn. . (6)
and species number density: k=1

8+ V.(V) = 0 (1) where E& is the internal energy per mole of species
k. If all of the species have a similar relationship for

" Carnegie-Mellon University, Pittsburgh, PA their internal energy, 1h = i(T), Eq. (6) reduces to

Current addres: Grumman Space Station Program dP P .
Support Division, P.O. Box 4650, Reston, VA 22090 de = - + e dlnn). (7)
"" Berkeley Research Associates, Springfield, VA 7- -
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the United States. and then solved numerically. The accuracy of the

solution is determined by the finite-difference algo-
rithm, the spatial resolution set by the computational



grid, and the temporal resolution set by the timestep. where Dkm is the diffusion coefficient for species k
Our approach has been to model the individual pro- diffusing into a mixture and Az and Ay are the lo-
cesses separately and then combine the results using cal dimensions of a computational cell. If the limiting
timestep-splitting techniques. The individual models timestep from Eq. (8) is smaller than that required by
are described in detail by Laskey (6] and discussed the convection, a subcycling procedure is used to eval-
briefly below. uate the diffusion term several times during a global

convection timestep. Subcycling becomes necessary
Convection when diffusion coefficients increase due to the elevated

The solution to the convection of mass, mo- temperature of the reacting flow.
mentum, and energy is obtained with the Flux- Thermal Conduction
Corrected Transport (FCT) algorithm, an explicit,
finite-difference algorithm with fourth-order phase ac- The conduction algorithm is also
curacy. FCT has been used extensively in super- two-dimensional and explicit subject to the stability
sonic flows and has produced results that are in excel- condition

lent agreement with theory and experiment [7]. Re- 1At1 1
cently, Patnaik et al. [8] developed the Barely Implicit + () < -

Correction for Flux-Corrected Transport (BIC-FCT) PCP (AZ)(
and this algorithm has been extended by Laskey (6]. where s/pcp is the thermal diffusivity. The conduc-
BIC is based on the idea proposed by Casufli and tion heat flux is added to the total energy in the im-tioneheat flux isaddednto the totasenerntainithetie
Greenspan (9] that only the term containing the plicit correction step. Subcycling is implemented for
pressure in the momentum equation and the veloc- thermal conduction in the same manner as it is for
ity in the energy equation must be treated implicitly molecular diffusion.
in order to avoid the sound-speed limitation on the
timestep. BIC-FCT has three steps. In the first step, Model for Chemical Reaction
the conservation equations are solved explicitly with The ALJF code models a single, global reac-
FCT using a relatively large timestep governed by the tion using the Parametric Diffusion Reaction (PDR)
Courant condition on the fluid velocity. In the second model [6]. In the original flame sheet model proposed
step, the energy and momentum equations are rewrit- by Burke and Schumann [13], the fuel and oxidizer
ten in terms of a pressure correction, 6P. These equa- react completely and are not permitted to coexist.
tions can be manipulated such that only one elliptic Thus, the flame is an infinitesimal interface between
equation for 6P must be solved. In the third step, a region of pure fuel and pure oxidizer. In the PDR
final values of momentum and energy are obtained by model, the reaction between the fuel and oxidizer does
adding the pressure correction terms. Accumulated not go to theoretical completion and it occurs over
energy fluxes are added to the calculation during the a finite volume and time interval. The fraction of
solution of 6P. Patnaik et al. (10] have incorporated reaction completion during a specified time interval
this algorithm in a two-dimensional flame program to is calibrated against a simulation which includes the
investigate laminar instabilities in premixed flames. detailed chemical reactions. In the PDR model, the

Molecular DiffuWon amount of fuel and oxidizer which react in a time step
does not exceed that amount determined from the de-

A molecular diffusion algorithm has been formu- tailed chemistry simulation.
lated to estimate the molecular diffusion fluxes with-
out having to solve a full matrix problem. The dif- Coupling
fusion velocities are solved individually using Fick's A complete solution to the governing equations
Law and then corrected using a procedure described requires solving the terms for individual processes as
by Kee et al. (11] to asure that the sum of the diffu- well as accounting for the interaction between the
sion fluxes is sero. This method is algebraically equiv- processes. In this simulation, we use timestep split-
alent to the first iteration of the DFLUX algorithm ting which assumes that the net effect of all the pro-
(12], an iterative approach that solves for diffusion ve- cesses can be represented as a sum of the solutions
locities. The energy flux which results from molecular to individual processes. This technique is valid if the
diffusion is calculated during the diffusion step and is changes in the dependent variables during a timestep
added. to the total energy during the calculation of are small.
the implicit correction. In these computations, the changes in internal

The molecular diffusion algorithm is fully two- energy resulting from the individual processes are not
dimensional and explicit subject to the stability con- incorporated into the solution as soon as they are
straint computed, but instead are accumulated until the end

Dm (A- + < (8) of a convection time step. The entire change in in-
D At AY 2 ternal energy for that time step is then added to the
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energy equation in the fluid convection step. The cou-
pling technique is described by Oran and Boris [7] and Results of Simulations
modified by Patnaik et al. [14] who have shown that
this technique allows for a greater addition of energy Here we use contours of important physical quantities
per timestep while maintaining numerical stability, to display the results of the calculations. Relative

species concentrations are shown by figures labeled
R1 , R., and R, where

Description of the System Modeled Ri= f (10)
f+o+p

R, 0

In this paper, we model the geometry, composition, = f+o+p (11)
and flow rates used in the jet flame experiments dis- P (12)
cussed in (16] and (17]. A fuel jet (see Figure 1), whose = +o+P
molar composition is 78% H2 and 22% N2, flows ver-
tically upward from a 0.5 cm radius contoured nozzle, and f, o, and p are the fuel (H2 ), oxygen (02), and
The fuel jet velocity in [16] and [17] is 3.26 cm/s; the product (H2 0) number densities, respectively. Each
present study examines fuel jet velocities of 3.26 and frame in the figures is labeled with the computational
20 m/s. In both the experiments and the calculations, step number and the corresponding physical time in
the jet is surrounded by a coflowing air stream whom seconds. In addition, we present contours of radial ve-
average velocity is 0.155 m/s. The Reynolds number locity normalized to the maximum velocity magnitude
of the physical flame resulting from the 3.26 cm/s jet (value in parentheses) in the domain shown. The con-
is 1000 based on physical viscosity at 300K, and drops tours are shown at intervals of 0.1, where solid lines
to 135 for viscosity at 1000K. For the 20 m/s jet, the indicate zero and positive values and dashed lines in-
Reynolds number at 1000K rises to only about 800. dicate negative values.
Thus, the physical flames modeled are not fully tur- The results of the 3.26 m/s simulation, begin-
bulent, but are transitional flows in which instabilities ning with Figure 3, show a domain which extends
lead to unsteady behavior. 2.41 cm from the jet centerline in the radial direc-

The initial temperature and pressure in the do- tion and 7.38 cm from the inlet boundary in the ax-

main are 300K and 1.013 x 106 dynes/cm 2 (I atm), ial. Both the calculations and the experiments show

respectively. The initial number density is calculated periodic growth and shedding of vortical structures
outside the flame surface, but no structures at the jetfrom the ideal gas law (Eq. (5)) and this density shear layer internal to the flame. A typical pattern

is apportioned 78% H2 , 22% N2 for radial distances of th, growth and shedding of the outer structure is

les than 0.5 cm from the jet centerline and 80% N3, ow by oto and sei in Figures

20% 02 (i.e., approximately air) for radial distance shown by contours ofR1, R, and ce in Figures 3, 4,

greater than 0.5 cm. Total mass density is calculated and 5. The flame surface in these figures is located

from the individual number densities. The axial ve- between the 0.100 R1 contour (rightmost in each Rf

locity of the hydrogen-nitrogen region is initialized to plot) and the 0.100 R. contour (left most in each R.

either 3.26 or 20 m/s and the axial velocity of the air plot). The fuel (RI) contours are pinched and bulge

region is initialized to 0.155 m/s. All radial velocities or ripple periodically as the structure passes, but the

are zero at the start of the simulations. Energy is structure itself is not visible in the R1 contours be-

initialized using data from the JANAF tables [15]. cause it is outside the fuel region. It appears in the
oxygen (R.) and product (Rp) contours that show the

The computational domain shown in Figure 2 is vortical structure and the entrainment of oxygen and
6.4 x 44.7 cm and consists of 72 x 128 computational product. The radial velocity contours in Figure 6 also
cells. The cell siz is uniform near the nozzle exit show the evolution of this large outer structure. The
and stretches toward the top and right boundaries, vortices begin to grow near the axial location above
The left vertical boundary is the jet centerline of the the exit plane where the rapid expansion of the flame
axisymmetric flow and the lower boundary is the exit surface is complete. This structure is commonly at-
plane of the jet nozzle and the inflow boundary for the tributed to instability of the shear layer between the
calculation. The timestep is adjusted throughout the flame and the surrounding air, but the frequency and
calculation to ensure that the Courant stability limit size of the structure do not correlate with empirical
based on flow velocity is satisfied. For the 3.26 m/s predicitions of shear layer instabilities. The initiation
simulation, the timestep is approximately 30 p.; for of the vortex may be the result of the flow field ad-
the 20 m/s simulation, it is approximately 8 pa. Both justing to the sudden change in the flow area created
simulations spanned approximately 0.5 s of physical by the expanding flame. The frequency of the growth
time and required 6 to 8 hours on a Cray-XMP. and shedding cycle is approximately 12 Hz and this is

3



consistent with the flicker frequency observed in [161 local temperature which will feed back through the

and [17]. diffusion coefficients to further reduce the tempera-

Instantaneous temperature profiles are shown ture.

in Figures 7a and b at two different axial locations, The preliminary experimental results for the

0.92 cm and 4.09 cm above the nozzle exit plane. 20 m/s jet not only show periodic growth and shed-

These temperature profiles were taken at the same ding of a vortex structure outside the flame surface,

time as the contours in Figures 3 - 6 At the lower ax- but also vortices forming inside the flame surface

ial position shown in Figure 7a, the temperature pro- along the shear layer between the fuel jet and the

files remain relatively constant in time, varying little slower, coflowing product generated by the reaction.

in magnitude or location. In contrast, peak tempera- The computer simulation, especially the RI contours

tures at the higher axial position, an example of which in Figure 8 and the radial velocity contours in Figure 9

is shown in Figure 7b, vary by as much as 230K and show similar structures being generated, growing, and

the radial location of the peak shifts in position by 0.3 merging along the shear layer. The domain shown in

to 0.6 cm. In Figure 7b, the peak temperature ranges these figures extends 1.79 cm from the jet centerline

between 2500K and 2730K and the radial location of in the radial direction and 14.2 cm from the nozzle

the peak ,aries from 0.8 cm to 1.3 cm. The minimum exit in the axial. The time elapsed between frames in

peak temperature corresponds to densely packed P, each figure is approximately 0.164 ms.

contours in Figure 5. The dense packing indicates From the simulation of nonreacting axisymmet-

that the reaction zone is thinned and, consequently, tic shear layers, Ginstem et al. [181 note that the nat-

the temperature gradient is steepened. This enhances ural instability frequency of the shear layer is charac-

thermal conduction and contributes to a lower peak terised by the Strouhal number based on shear layer

temperature. In addition, the large outer structures thickness, Ste. = foe/Uo, where f is the instability

strongly affect the transport of oxygen to the flame frequency, U0 is the velocity of the jet and O0 the ini-

surface, an effect that could lead either to lower tern- tial shear layer thickness. When the nozzle is not in-

peratures due to mixing with cooler gases or higher cluded in the computational domain, O0 is effectively

temperatures because of exhanced mixing which en- equal to the radial spacing of the computational grid.

courages more reaction. The complicated interactions The value of St#. which predicts the frequency is typ-

between the flame and the coflow region are directly ically about 0.014, giving a predicted frequency for

related to the peak magnitude and movement of the the present jet of approximately 1200 Hs. Note that

high-temperature region. The location, size, and fre- the inner structure has a much higher frequency than

quency of changes in the temperature peak gener&Ily the structure outside the flame surface. If the insta-

agree with experimental results presented in (16] and bility wavelength, A0 , is given by A0 = vp/f, where

[171. However, the maximum calculated peak temper- v? is the typical longitudinal phase velocity equal

ature is on the order of 2730K and this exceeds the to 0.0Uo (18], then the expected wavelength for the

experimental maximum by approximately 400K. present jet would be approximately 1 cm. The pre-

The source of the temperature discrepancy may dicted wavelength is approximately the same as theThezoue~eof he empratre iacelpnma distance measured between successive initiations of

indicate the need for further calibration of the PDRte oeas ure 9, andehe i cted

model. The concentration of the product species in the vortex as seen from Figure 9, and the predicted

the calibration are a function of the flame tempera- frequency is within a factor of two of the frequency

ture and the present PDR model does not a estimated from the figure. Thus, although a shear

for varying flame temperature when specifying the layer in the simulation is analagous to the physical
fraing ofallae empreato n Ifioolge, shear layer, the length and time scales of the calcu-
fraction of allowable reation, . If a is too large, lated shear layer are governed by the effective mo-the higher resutinS temperature leads to larger difbi- mentum thickness introduced by the spacing of the

sion coefficients, mote fuel and oxygen in the reaction computational grid.

zone, and yet highe tunperature For example, us- Thecomp utt grid.
ing a traditional flame sheet model (z := 1) produces The results of the 20 m/s jet simulation also
maximum temperatures in excem of 3000K. A mall show vortices growing and being shed outside the

change in x reflecting the oscillating temperature of flame surface. A typical cycle is shown by contours of

the flame may be sufficient to reduce the peak tern- R1 , R?., and R, in Figures 10-12. These figures show

perature to a more correct value. The higher ten- a domain which extends 3.88 cm from the jet center-

peratures in the calculations may also occur because line in the radial direction and 14.2 cm from the inlet

there is no nozzle lip in the computational domain and boundary in the axial.

the reaction model does not include loomes that occur As in the lower-velocity jet, the R! contours in

because of the nozzle. Effects such as heat transfer Figure 10 bulge and pinch periodically, but the outer

to the nozzle and the absence of chemical reactions in structure is not visible. The structure does appear in

the immediate vicinity of the nozzle would reduce the the oxygen and product contours in Figures II and
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12, but the vortices are not as well formed as those heat transport processes interacting with the flame.
generated in the lower-velocity simulation. Figure 13, This is most apparent in the variation of the location
the radial velocity contours, shows one possible reason and magnitude of the peak temperature at a given
for this. The domain shown in this figure extends to axial location. The results shown in "is paper quali-
6.07 cm in the radial direction and 14.2 cm in the axial tatively agree with experimental results presented by
direction, and the velocity is contoured over the range Roquemore et al. [5] that show two types of instabil-
-2 to 2 m/s in intervals of 0.2 m/s. Whereas the outer ities.
structure in Figure 6 grew and moved independently The flows shown in this paper result from a corn-
of the outside .ow, a small structure in Figure 13 ap- plex interplay between the jet and the coflowing air,
pears to break off the end of a larger, structure which and this interaction leads to the structures and pat-
moves along with it. The larger, structure loses form terns of vortex initiation and growth. Thus, it is im-
as it moves out of the axially well-resolved region, but portant to assess the effect of te computational grid
a similar structure is periodically generated approxi- on these outer coflow patterns. Each frame of the
mately 4 cm above the nozzle exit. The frequency of radial velocity contours in Figure 6 shows a domain
this cycle is approximately 8 Hz. which extends 4.38 cm from the jet centerline in the

The temperature trends shown in Figures 14a radial direction and the same 7.38 cm in the axial. Be-
and b for the higher-velocity jet mirror those dis- cause of limited resolution and grid stretching in the
cussed above for the lower-velocity case. Below the cells approaching the right boundary, the flow field is
height where the outer structure grown (for example, distorted and the results are degraded. The intent of
2.52 cm from the jet inlet), the temperature profile is the initial grid design was to provide a region which
fairly constant in time. At a height of 5.81 cm from could act as a cushion between the structures forming
the jet, the flow is affected by the growth and passage near the flame surface and the edge of the computa-
of the outside structure and the location and magi- tional domain. It was not intended to model a region
tude of the temperature peaks reflect the denser pack- which may contain complicated structure of its own.
ing of the R, product contours shown in Figure 12. Similarly, a large portion cf the axial extent of the
For the higher-ve:ocity jet, however, the peak tern- domain consists of highly stretched cells that act as
peratures have increased, varying from a minimum of a cushion and damp spurious reflections from the top
2720K to a maximum of 2880K. This is approximately boundary. This means that there is good resolution
150K higher than lower-velocity peak temperatures. only in a domain approximately 1.5 cm, from the jet
As with the 3.26 cm/s jet, the interaction between centerline in the radial direction and 5.0 cm from the
the flame surface and the structures in the coflow re- jet inlet in the axial. The infuence of the flow pat-
gion include a complex combination of convection and terns from radial distances greater than 1.5 cm may
heat transfer effects. But, in addition, the high fre- obscure the details of structure growth and the in-
quency structures at the jet shear layer may enhance teractions between the generated vortices may not be
mixing between the fuel and product, leading to more represented accurately. Similarly, the stretched grid
fuel being available at the flame surface. This could at axial distances greater than 5.0 cm probably affects
account for the higher peak temperatures. the ability of vortices to maintain their structure fur-

ther downstream. It should be noted that of the 72
Conclusions computational cells in the radial direction of the full

In this paper, we present the results of numerical sir- domain, 55 are in the 1.5 cm radial distance and 90
ulations of two unsteady H 2 - N2 diffusion flames ot the 128 cells in the axial direction are in the 5.0 cm

with jet velocities of 3.26 m/s and 20 m/s and inves- axial distance. The high-temperature region is con-
tigate the instabilities which occur in these flows. At tained in the well-resolved radial portion of the grid,
the lower velocity, the flow field is srmooth except for and the temperature of the coarsely resolved region is
the existence of large structures in the slowly mov- expected to be near ambient.
ing coflow region. Thes structures have a frequency These results point to a number of future cal-
of approximately 12 Hs and appear to be linked to culations that would enhance of understanding of un-
flickering observed in diffusion flames. At the higher steady jet diffusion flames. For example, the vai*,a-
velocity, we see not only low-frequency structure but tions in temperature implies that the larger structures
also a higher-frequency instability which forms in the affect the reaction of fuel and oxidizer, but the con-
mixing layer between the high and low velocity gases. vective process in these flows is quite comnlex. For
The main effect of the high-frequency structure may example, the large structures may either increase the
be to enhance the transfer of fuel to the flame sur- amount of reaction which occurs by more efficiently
face. The larger structures in the coflow, however, af- convecting unburnt reactants to the flame zone, or
fect the overall location of the flame surface, the local they may quench the reaction by supplying an ex-
irregularities of the surface, and the convective and cess of cold gases to the flame. In addition, although
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INTRODUCTION

In previous papers (1,2] we have described an explicit finite element

solution procedure for the compressible Euler and Navier-Stokes equations. The

approach was a finite element equivalent of a two-step Lax-Wendroff scheme and

was implemented on unstructured triangular or tetrahedral grids. An important

feature of the work was the use of adaptive mesh refinement methods for the

solution of steady state problems in 2D, using error indicators based upon

interpolation theory.

In this paper, some recent developments in the extension of this approach

are considered. We will describe how the basic solution procedure can be

modified in a straightforward manner to produce a high resolution scheme on

unstructured grids. This is accomplished by utilizing, in a finite element

context, Zalesak's (3) multidimensional extension of the flux corrected transport

(FCT) ideas of Boris and Book [4]. The problem of triangular mesh generation

will be addressed and the adaptive mesh approach will be widened to handle 2D

problems involving strongly transient phenomena. This will be implemented by

allowing adaptive refinement and derefinement of the mesh as the solution

proceeds. Finally, it will be demonstrated how directional refinement procedures

can be incorporated for the efficient computation of steady 2D flows involving

significant 1D features.

BASIC ALGORITHM

The basic solution algorithm will be briefly described for the two

dimensional Navier-Stokes equations written in the conservative form

U F. G.a- + EJ6 (j=1,2) i

J J

where U is the vector of conservation variables and F. and G denote the
- -J -J

advective and viscous flux vectors respectively. A time-stepping scheme for this



equation can be developed, in an operator-split fashion, by treating the

diffusion terms in an explicit manner and the advective terms in the Lax-Wendroff

fashion (5). The result is that

Um+ 1  = Um  - 2 b "e 6F- (2)
Atax. + A ax.(2

where a superscript m denotes an evaluation at time t = tm, ti+1 = tm + At and

dF.
A dF (3)

The spatial domain, Q, is discretized using 3-noded linear triangular elements

and a weighted residual [6] form of equation (2) is considered. The resulting

integrals are evaluated exactly (in a 2-step fashion by firstly calculating an

element level approximation to Um+ /2  (7)), leading to an equation

M 6UH = fm (4)

where M is the consistent mass matrix, 6UH is the vector of changes in the

nodal values of U over the timestep and the superscript H is introduced for use

later. For the simulation of transient flows, this equation system can be solved

iteratively and explicitly (8] and the method coupled with a domain splitting

technique [9) to produce an efficient computational procedure. For steady flows,

local time steps are employed and equation (4) is replaced by the explicit scheme

6UH =fm (5)

where M is the lumped diagonal mass matrix. It should be noted that , in ID

equation (5) reduces to the well-known finite difference scheme of Burstein (10].

For problems involving strong shocks, the solution U m+ 1 is smoothed, by

the application of artificial viscosity [11), before proceeding to the next time

step.

FCT EXTENSION

A more robust solution scheme, giving better resolution of flow discontinu-

ities, can be produced by adding an FCT procedure to the above process.

Erlebdcher [12) and Parrott and Christie (13) have demonstrated how Zalesak's [3]

multidimensional extension of the FCT algorithm of Boris and Book [4) can te

implemented on triangular grids. The idea is to combine a high order scheme with

a low order scheme in such a way that the high order scheme is employed in

regions where the flow variables vary smoothly, whereas the low order scherrke is

favored in those regions where the variables vary abruptly. The low order schere



(a)b) (C) (d)

Figure 1

Mach 8 flow past a cylinder. (a) Mesh (b) Velocity vectors (c) Pressure
contours (d) Density contours.

Figure 2

Definition of the mesh parameters 6, s and a.



should give monotonic results for the problem of interest.

The solution method of equation (4) will be used as a high order scheme and
H

a high order solution, U , after an time step can be defined by

uH um + 6uH (6)

Similarly, a low order solution, UL, is defined by

UL =U + 6UL (7)

where the low order increment is calculated as

6UL = 6UH + D (8)

and the smoothing term D is given by

D =CL L (M- Um  (9)

where CL is a constant. This form for the smoothing is suggested by the fact

that at node i on a uniform grid in 1D

- !,)mj =(Um'1  2UfM + LIM )16 (10)

It should be noted that equations (6-8) can be re-arranged to give

UH = UL + D (11)

The new solution is computed according to

Um+ 1  U L + D* (12)

where D is obtained by writing the element contributions to D, in such a way

as to attempt to ensure that U m+1  is free from extrema not found in Um or U L

(14, 15].

The numerical performance of this FCT scheme is illustrated in Figure 1

which shows the solutions obtained for the problem of Mach 8 flow past a

cylinder.

Further generalizations of FCT are possible which offer interesting

possibilities for future investigation (16J.



Figure 3

Detail of the initial mesh produced for the analysis of a store separation
problem.

Figure 4

Regular shock reflection at a wall. Sequence of meshes produced using mesh
aneirhmant And tho rnrr~snondina oressure contours.



."ESH GENERATION

The use of triangular elements in 2D means that computational domains of

complex geometrical shape can be readily modelled and a variety of triangular

mesh generation algorithms for planar domains are available [17, 18]. The

approach to mesh generation to be outlined here begins by defining the boundaries

of the solution domain in terms of Bezier polynomials and then -jvering this

domain with a coarse 'background' grid of 3 noded linear triangles. This grid is

normally constructed by hand and the only geometrical requirement imposed is that

the solution domain should be completely covered by this grid i.e. the background

grid is not required to approximate the geometry. At each node on the background

grid, we specify the values of mesh parameters 6, s, a. During the mesh

generation process, the local values of these parameters for the mesh bei ,g

generated will be obtained by interpolation over the background grid. For the

exact defiiition of these mesh parameters, it is useful to refer to Figur' 2

which shows a typical generated triangle. The tria'ngle has length s6 in the

direction of a and length 6 in the direction at right angles to a . We

call 6 the local node spacing, s the local degree of stretching and a the

local direction of stretching. The full flexibility of the mesh generator need

not be used to construct an initial mesh for a given problem, but it will be used

in an adaptive mesh process to be described later.. In particular, if a uniform

distribution of 6 is required, with no stretching, the background grid need

only consist of a single element. The mesh generation process begins with the

placing Jf the boundary nodes. The lines joining successive boundary nodes form

the initial generation 'front', which is the collection of sides available to

construct triangles. One side in the front is chosen, and a triangle is

constructed with values of 6, s and a interpolated from the background grid.

The front is updated and the process is repeated until the front is empty, at

which stage the whole solution domain has been discretized. Full details of the

mesh generation process can be found elsewhere [19].

The performance of the mesh generator is demonstrated in Figure 3, which

shows a dettil of the initial mesh produced for the analysis of a store separa-

tion problem. This problem has been used to demonstrate the full power of the

generator by directly coupling it to the transient solution procedure and using

it to locally regenerate the mesh as the store moves through *he flow field [20].

ADAPTIVE MESH STRATEGIES

Adaptive mesh strategies have a major role to play in tte development of

efficient solution techniques for large problems in CFD. The ultimate objective

is the ability to solve a given problem to a prescribed accuracy with the optirnu=

number of grid points and, although this goal has not yet been met, major stes
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Figure 5

Shock impinging on a half-cylinder
(a) t=O. 2554 elements, 1335 points
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Figure 5 (cont)

(b) t=0.3, 9057 elements, 4626 points
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Figure 5 (cant)

(c) t=0.5. 12020 elements, 6129 points



Mesh movement techniqueg can be contemplated [21, 22] Dut sufTer from the

drawback that the accuracy of the final computation can be limited by the

structure and resolution of the initial grid. Mesh enrichment algorithms for

steady problems [23, 24] generally advance the solution towards steady state on

an initial coarse grid and then obtain an estimation of the error in each

computational cell by using an error indicator. For the Euler or Navier-Stokes

equation systems, the error indication is normally based upon a key-variable eg.

the density is a popular choice for the Euler equations. Indicators based upon

interpolation theory can be used, with equi-distribution of the error being the

object of the refinement process [25]. The cells exhibiting largest error are

automatically subdivided and the computation proceeds, with this process being

repeated until the analyst is satisfied with the solution quality.

The mesh enrichment approach works well in practice [7] and Figure 4 shows

the solution of problem of regular shock, reflection at a wall which has been

solved in this manner. This solution was produced using the basic solution

algorithm described above.

The extension of the mesh enrichment concepts to the solution of transient

problems has been demonstrated recently (26). Now, as the flow features of

interest are moving through the solution domain, for economy of computation mesh

enrichment has to be combined with the capability of derefining the mesh in

regions where the error indication is small. This work has produced a highly

vectorizable algorithm, with low storage requirements, and with the ability to

recover the original grid when the flow feature of interest has passed. The

performance of the algorithm is shown in Figure 5 which displays the computed FCT

solution for the problem of a Mach 10 shock impinging upon a half-cylinder. The

solutions are depicted at three selected times during the transient.

A drawback of the mesh enrichment approach is that it provides a uniform

local mesh refinement, whereas many flow features of interest are essentially

one-dimensional in character. This suggests that directional refinement

techniques could be computatlonally more efficient and work in this area has

already begun. If element error indicators are replaced by indicators along

element sides (27), directional refinement for steady problems can be achieved,

along with derefinement. This is illustrated in Figure 6 which again shows the

solutfon obtained for the problem of regular shock reflection at a wall using the

basic solution algorithm. An alternative approach, is to use the mesh generator

described earlier to regenerate the mesh based upon information provided by the

computed solution on the current mesh [19]. Figure 7 shows the problem of Mach
25 flow past a blunt body at an angle of attack of 20" which has been solved

using FCT in this manner with a sequence of three grids.



Fi gure 6

Regular shock reflection at a wall. Sequence of meshes produced using
directional refinement and the corresponding pressure contours.

Figure 7

Mach 25 flow past a blunt body at 20" angle of attack. Sequence of meshes
n.,A~r,,A hv azAntivo mach raanartiffnn An1 the rorresnondina density
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1. Abstract

An adaptive finite element scheme for transient problems is presented. The classic
h-enrichment/coarsening is employed in conjunction with a triangular finite element
discretization in two dimensions. A mesh change is performed every n timesteps, de-
pending on the Courant-number employed and the number of 'protective layers' added
ahead of the refined region. In order to simplify the refinement/coarsening logic and
to be as fast as possible, only one level of refinement/coarsening is allowed per mesh
change. A high degree of vectorizability has been achieved on the CRAY-XMP-12 at
NRL. Several examples involving shock-shock interactions and the impact of shocks on
structures demonstrate the performance of the method, indicating that considerable
savings in CPU-time and storage can be realized even for strongly unsteady flows.

2. Introduction

The solution of large-scale transient problems around complex geometries is a
con mn -roblem to rnkny fields of computational fluid dynamics. Among the many
applications one can envision we mention the impact of shock waves on structures
(11, shock-shock interactions [21, detonations [3], the computation of advancing flame
fronts [4], the secondary or tertiary recovery in petroleum engineering [5] and bore
formations in estuaries [6]. All of these flow fields share a feature common to all
advection dominated problems: regions of rapid change are embedded in regions where
the flow variables vary smoothly. However, the inaccurate representation of these sub-
regions in the numerical solution may influence large regions of the solution domain,
which in turn may deteriorate the overall accuracy obtained. As these subdomains
which require a finer gridding are usually not known a priori and/or change position,
either a fine grid has to be employed over the whole domain (which for many problems
means an excessive overhead in CPU and storage), or adaptive refinement techniques
have to be invoked.

For the reasons just mentioned, adaptive refinement techniques are currently re-
ceiving increased attention in the literature (7-201. It is fair to say that for steady state
problems very robust and elaborate schemes are available (see, for example t131). As
the refinement is performed only as the solution reaches steady state, CPU and storage
requirements for the mesh adaptation in this case do not play important roles. This
in turn means that one has the freedom to develop more elaborate mesh refinement
schemes, e.g. those that refine the grid in only one direction where needed 1161.



On the other hand, if transient problems are considered, the following requirements
must be met:

- As the grid adaptation has to be performed many times, the adaptation algorithm
must be fast , and therefore must lend itself to vectorization/parallelization.

- As the grid adaptation process becomes an integral part of any code, the algorithm
should not be storage intensive.

- As the feature that has been refined may pass again (e.g. a shock reflection), the
original grid should be recovered after the feature has passed.

This in turn implies that:

- No directional refinement [161 can be used, as these schemes appear as too storage
and CPU-intensive.

- Classic h-enrichment/coarsening must be employed, as it does not require a major
storage overhead and due to its simplicity lends itself easily to vectorization.

- Only one level of refinement/coarsening is employed per 'mesh change' in order to
minimize the logic involved and thus CPU-requirements.

- For triangles, successive subdivision of a triangle into two (see Figure 1) has to be
avoided. This in turn reduces the number of refinement cases considerably.

3. An Error Indicator

Many possible error indicators have been suggested in the literature (see [7-20] and
many other publications), and numerical experience indicates that all perform similarly
well. However, in the present context, the following requirements must be met:

- The error indicator must be fast.

- As the feature may move only very slowly or
come to a standstill (e.g. a shock entering a very dense region), the error indicator
must also be reliable for steady state aRlications.

- As systems of equations are solved, and more than one 'key-variable' [11] may be
employed, the error indicator should be dimensionless.

- In order to be applicable to a large class of problems, the error estimator should be
bounded (independently of the solution), so that preset refinement/coarsening toler-
ances can be employed.

In order to meet these requirements, a modified form of the classic interpolation es-
timates [191 used for steady state computations [14-18,201 has been adopted. These
estimators make use of an appropriate seminorm for the detection of those regions
which need further refinement or coarsening, e.g. the H2-seminorm [15,19,20

I1 - '11o 5 -< h" 1Jul,,
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where u denotes the exact and u h the approximate solution, c is a mesh-size-
independent constant, h is the characteristic mesh size, and

iU12 = 2U ],2ii,: dn (2)

Second derivatives are justified here because the shape functions used in the finite
element discretization are linear. Numerically, we first evaluate the second derivatives
at the nodes via a variational statement [22], and then approximate the integral (2)
'conservatively' by taking at element level the maximum second derivative at the nodes.
For linear elements of constant length h in 1-D, at the nodes one obtains:

ei = h- 2 . JUi+I - 2. U1 + Ui 11 . (3)

The modified error indicator is given by:

Ei= Ui+I - 2.- U, + ui_,l (4)
=U,+ - Ui + lU, - Ui-I + e [JU,+,J + 2. iui + IU-II]

We remark the following properties of this modified error indicator:

- By dividing the second derivative by the 'jumps' (gradients) the 'eating-up' effect in
the presence of a very strong shock is avoided (i.e. only the value of the normalized
H2-seminorm is of importance, not the magnitude of the H2-seminorm as such).

- Normalizing in this way also has the advantage that the error indicator becomes
dimensionless, so that more than one 'key-variable' can be used without encountering
dimensioning problems.

- Moreover, the modified error indicator is now bounded (0 < Ej < 1), so that preset
tolerances can be employed (this is of particular importance for transient problems).

- The terms following e are added as a 'noise' filter in order not to refine 'wiggles' or
'ripples' which may appear due to loss of monotonicity. The value for C thus depends
on the algorithm chosen to solve the PDEs describing the physical process at hand.

The generalization of this error estimator to multidimensional situations is as fol-
lows:

-I XX, 1 (fn NI N-1d[I U,) 2  (El = h 1 ,((5).,d.U)
SE ,,(f nIN , [IN,uI + (INI IluI)] d() 2

where N' denotes the shape-function of node I.

After having determined the values of the error indicators in the elements, all ele-
ments lying above a preset threshold value CTORE are refined, while all elements lying
below a preset threshold value CTODE are coarsened. Protective layers of elements are

3



added to surround the elements to be refined, so that the 'feature' (e.g. a shock) always
travels into an already refined region. The number of protective layers that are added
depends on the Courant-number employed and the number of timesteps taken between
grid modifications. Usually the refinement is performed every 5-10 timesteps, so that
for a Courant-number of C = 0.2 - 0.4 one to three protective layers are sufficient.

4. Grid Logic

As described above, we limit the number of refinement/coarsening levels per mesh
change to one. Moreover, we only allow refinement of a triangle into two or four and
avoid the successive refinement of a triangle into two. This implies that there exist
only six possible cases for refinement and three for coarsening. These cases are shown
in Figures 1,2.

In order to identify the 'parent' and 'son' elements of any element, six integer
locations per element were employed in the present situation. The first three integers
store the new three neighbor elements ('sons') of an element that has been subdivided
into four (the center element of the four is kept as 'parent'). In the fouth integer the
element from which the present element originated (the 'parent' element) is stored,
while the fifth integer denotes the side of the 'parent' element this element came from.
Finally, in the sixth integer location the refinement level is remembered. These six
integer locations per element are sufficient to construct further refinements or to re-
construct the original grid. Observe that no classical tree-structure is employed.

The introduction of further nodes (refinement) is performed by first identifying the
sides that require refinement, and then labelling these sides with the new node numbers.
By doing this, the introduction of coordinates, values for the unknowns and boundary
conditions at the new nodes can be performed independently of the introduction of new
elements. In principle, these operations could be performed in parallel.

The whole mesh refinement/coarsening process described can be vectorized to
a large extent, particularly if the machine available vectorizes GATHER/SCATTER
loops efficiently. On the CRAY-XMP-12 at NRL the present algorithm performs more
than 99% of all operations necessary for a mesh change inside long (_ 50) vectorizable
loops. In fact, the CPU-time spent in non-vectorizable loops is of the order of 1%,
indicating a high degree of efficiency. The processing rate for the grid adaptation
alone is of the order of 1008ec per grid point per mesh change. Although this figure
seems high, one has to bear in mind that the adaptation is performed only every 5-10
timesteps, which means that effectively it is much lower.

5. Numerical Examples

We confine the numerical examples to the computation of highly unsteady com-
pressible flows with shock waves. Other fields of applications are obvious. As the basic
hydrodynamics-solver we employ the FEM-FCT code of L6hner et.al. [21], which is
capable of reproducing moving and stationary shocks over two elements without loss of
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monotonicity. For this class of problems and the algorithm employed it was found that
the following choice of refinement/coarsening parameters produced acceptable results:

- refinement tolerance: CTORE=0.3

- coarsening tolerance: CTODE=0.1

- noise parameter : e =0.2

- key variable : density

We also tested other key-variables as error indicators, but it was found that for the

class of problems under consideration, i.e. compressible Euler equations, the density
gave the best results (pressure is not a good error indicator at contact discontinuities).

Unless otherwise stated this set of parameters was employed for all the examples
shown below.

5.1 Circular Blast-wave : The problem statement, as well as the solutions obtained are
shown in Figure 3. A quadrant of a cylinder in the lower left hand corner was given a
density of 10.0 and a pressure of 40.0, while the rest of the computational region was
filled with density 1.0 and pressure 1.0. Because all grid points inside radius 5.1 were
disturbed and all gridpoints outside were not, the surface of the cylinder on the finite
element grid is not completely circular. The number of refinement levels allowed in
this case was NREMX=5 which would correspond to a regular grid of 160*160=25600
points, and the grid was modified every 10 timesteps with two protective layers, while

the hydrodynamics code was run at a Courant number of C = 0.2. This case was
run to test the symmetry or 'circularity' of the numerical solution. Although the
numerical solution obtained is not completely symmetric with respect to the 45*-line
(the symmetry is lost after fifteen mesh changes), the difference between the residuals
of the x and y-momenta is only discernable in the fouth significant digit.

The evolution of the main shock is clearly visible in Figures 3a-3b, and the solution
at time T=9.3 is shown in Figure 3cd. Observe that at T=9.3, the number of gridpoints
needed (2400) when adapting the mesh as compared to a uniformly refined grid (25600)
is more than a factor of 11. Admittedly, this is a simple example, but it clearly
demonstrates the great potential that adaptive refinement offers for a large class of
problems. The density for all points in the domain is shown in Figure 3e plotted versus
the radial distance from the origin, indicating a nearly perfect symmetry.

5.2 Shock impinfing on a half-cylinder: The problem under consideration is shown in
Figure 4a. A strong shock (M . = 10) runs onto a half-cylinder, is reflected in part,
forms a Mach-stem and produces an expansion behind the cylinder.The number of

refinement levels allowed in this case was NREMX=3 (which would correspond, on a

uniformly refined grid to NPOIN=28032 points), and the grid was modified every 5
timesteps with only one protective layer, while the hydrodynamics code was again run
at a Courant number of C = 0.2.

The solutions obtained at different times during the transient are depicted in
Figures 4aU-4f. The maximum number of gridpoints needed for this computation was
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NPOIN=6129, which implies a savings-factor of more than four over a uniformly refined
grid.

5.3 Shock impinging on two obstacles: This problem is essentially the same as the pre-
vious one, only that the geometry is considerably more involved. It is reproduced here
in order to demonstrate not only the effectiveness of the adaptive grid scheme pre-
sented, but also of unstructured grids in general, when realistic problems need to be
simulated. The two obstacles, as well as the solution at time T=0.0 (a strong shock
(M. = 10) coming from the left) are shown in Figure 5a. The number of refinement
levels allowed in this case was NREMX=3. Had the grid been refined uniformly, this
would correspond to NPOIN=38080 points. The grid was modified every 5 timesteps
with one protective layer. The Courant number was again set to C = 0.2.

The solutions obtained at different stages during the transient are depicted in
Figures 5a-d. Observe the amount of detail that the adaptive refinement procedure is
capable of reproducing. The maximum number of points required (corresponding to
time T=0.8) was NPOIN=8101, again less than four times what a uniform refinement
would have required. During most of the computation, the number of gridpoints is of
course much lower (the savings much bigger). As the physics become more involved,
more grid points are required, and correspondingly larger portions of the domain are
refined.

6. Conclusions

An adaptive finite element scheme for transient problems has been presented. The
classic h-enrichment/coarsening is employed in conjunction with a triangular finite
element discretization in two dimensions. The grid is adapted every n timesteps, de-
pending on the Courant-number employed and the number of 'protective layers' added
ahead of the refined region. Particular emphasis was placed on speed and low storage
requirements from the outset. Therefore, only one level of refinement/coarsening was
allowed per mesh change, and the subsequent subdivision of a triangle into two was
avoided. It has been demonstrated that with these restrictions in mind a high degree
of vectorizability can be achieved on modern supercomputers.

An obvious extension of the present work is the development of a similar scheme
in three dimensions involving tetrahedrons, and the combination of different types of
elements (quads,triangles) in one single code.
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Figure 4: Shock impinging on a half-cylinder.
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Figure 5: Shock impinging on two obstacles.
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ABSTRACT

A high resolution finite element method for the solution of problems involving high
speed compressible flows is presented. The method uses the concepts of flux-corrected
transport and is presented in a form which is suitable for implementation on completely
unstructured triangular or tetrahedral meshes. Transient and steady state examples
are solved to illustrate the performance of the algorithm.
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INTRODUCTION

Over the past few years. there has been an ongoing interest in the application
of unstructured grid finite element methods to the solution of problems of high speed
compressible flow. In this area, the authors [18-201 have proposed a two-step explicit
implementation of a second order Taylor-Galerkin procedure [16,17] and have used this
approach to solve successfully a variety of inviscid and viscous problems. The addition
of artificial viscosity is required to stabilize this solution procedure when it is applied
to the analysis of problems involving strong discontinuities. and this has the effect of
spreading flow discontinuities over several computational cells.

Solution methods based upon high resolution schemes [1-6] give sharper definition
of flow discontinuities and are supposedly more robust. In two and three dimensions,
these methods are generally implemented by using operator splitting and applying
one-dimensional concepts in each coordinate direction separately. The finite element
practitioner, however, finds difficulty in operating in this same manner, as the use of
unstructured grids makes this approach impractical. The one high resolution method
which can be used directly on unstructured grids is Zalesak's [7] multidimensional gen-
eralization of the 1-D flux-corrected transport (FCT) ideas of Boris and Book [8-10].
This method employs a high-order scheme together with a low-order scheme and at-
tempts to combine these in such a way that the high-order solution is used in smooth
regions of the flow whereas the low-order solution is favored near discontinuities. The
low-order scheme should produce monotonic results for the problem to be solved. Er-
lebacher [11] and Parrott and Christie [12] showed how FCT ideas could be interpreted
in the finite element context for a single governing equation and implemented on tri-
angular meshes. Our contribution is the extension of the technique to deal with the
solution of a system of equations and the formulation of a scheme with high temporal
accuracy, which is well-suited for the analysis of transient problems. The numerical ex-
amples presented to demonstrate the performance of the algorithm involve the solution
of both steady and transient flows of inviscid and viscous fluids.

THE EQUATIONS OF COMPRESSIBLE FLOW

The governing equations of compressible flow can be written in the conservation
form

ou OF F,& - axi(1)

where the summation convention has been employed and

r P PUJ
U = pu F = puiu, +pbij ,FT T 2)

SPe I I j(pe + p)l ula + k-a]
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Here p. p, e, T and k denote the density, pressure, specific total energy, temperature
and thermal conductivity of the fluid respectively and u, is the component of the fluid
velocity in the direction xi of a Cartesian coordinate system. The equation set is
completed by the addition of the state equations

1 1
p=(- 1)p[e- ujuI , T =c,,[e- uuj] (3)

which are valid for a perfect gas, where -y is the ratio of the specific heats and c" is the
specific heat at constant volume. The components of the viscous stress tensor rij are
given by

O9, eu, ) uk ,
= -i + -)U + x-6,u (4)

4
9
1j 9X OXk bi(4

and it is assumed that X and A are related by

-= 2p (5)
3

THE FLOW SOLVER: FEM-FCT

As stated above, high resolution, monotonicity preserving schemes must be devel-
oped in order to be able to simulate the strong nonlinear discontinuities present in the
flows under consideration. Although the pertinent literature abounds with high reso-
lution schemes [1-61, only Zalesak's generalization [71 of the 1-D FCT schemes of Boris
and Book [8-101 can be considered a truly multidimensional high resolution scheme. We
remark here that the use of unstructured grids requires such truly multidimensional
schemes, as the lack of lines or planes in the mesh inhibits the use of operator splitting.

Erlebacher 1111, and Parrot and Christie [121 first analyzed FCT schemes in the
context of finite element methods. We develop their ideas further to include the con-
sistent mass, which yields high temporal accuracy, and to systems of equations.

The Concept of Flux-Corrected Transport (FCT)

We consider a set of conservation laws given by a system of partial differential equa-
tions of the form given in eqn.(1). and assume that the advective fluxes F* = Fa(U)
play a dominant role over the viscous fluxes F" = F"(U). For flows described by
eqn.(1), discontinuities in the variables may arise (e.g. shocks or contact discontinu-
ities). Any numerical scheme of order higher than one will produce overshoots or ripples
at such discontinuities (the so-called 'Godunov theorem' 1151). Very often, particularly
for mildly nonlinear systems, these overshoots can be tolerated. However, for the class
of problems studied here. overshoots will eventually lead to numerical instability, and
will therefore have to be suppressed.
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The idea behind FCT is to combine a high-order scheme with a low-order scheme
in such a way that in regions where the variables under consideration vary smoothly
(so that a Taylor expansion makes sense) the high-order scheme is employed, whereas
in those regions where the variables vary abruptly the schemes are combined, in a
conservative manner, in an attempt to ensure a monotonic solution.

The temporal discretization of eqn.(1) yields

U + = U" + AU, (6)

where AU is the increment of the unknowns obtained for a given scheme at time
t = t". Our aim is to obtain a AU of as high an order as possible without introducing
overshoots. To this end, we re-write eqn.(6) as:

U + = U" + AU1 + (AU h - AU'), (7)

or

U "+ 1 = U1 + (AU h - AU). (8)

Here AUh and AU' denote the increments obtained by some high- and low-order scheme
respectively, whereas U' is the monotone, ripple-free solution at time t = tn+ 1 of the
low-order scheme. The idea behind FCT is to limit the second term on the right-hand
side of eqn.(8):

Un + 1 = U' + lim(AUh - AU'), (9)

in such a way that no new over/undershoots are created.

It is at this point that a further constraint, given by the conservation law (1)
itself must be taken into account: strict conservation on the discrete level should be
maintained. The simplest way to guarantee this for node-centered schemes (and we
will only consider those here) is by constructing schemes for which the sum of the
contributions of each individual element (cell) to its surrounding nodes vanishes ('all
that comes in goes out'). This means that the limiting process (eqn.(9)) will have to
be carried out in the elements (cells).

Algorithmic Implementation

We can now define FCT in a quantitative way. We follow Zalesak's exposition [7],
but modify the term 'flux' by 'element contribution to a node'. Those more familiar
with finite volume or finite difference schemes should replace 'element' by 'cell' in what
follows.

FCT consists of the following six algorithmic steps:

1) Compute LEC: the 'low-order element contribution' from some low-order scheme
guaranteed to give monotonic results for the problem at hand;

4



2) Compute HEC: the 'high-order element contribution', given by some high-order
scheme;

3) Define AEC: the 'antidiffusive element contributions':

AEC = HEC - LEC

4) Compute the updated low-order solution :

U, = U" + ELEC = U" + AU' (10)
el

5) Limit or 'correct' the AEC so that U"+1 as computed in step 6 below is free of
extrema not also found in U1 or Un :

AECc = Cel * AEC, 0 < Cel < 1; (11)

6) Apply the limited AEC :
un+1 = Ul + AEC. (12)

e,

The Limiting Procedure

Obviously, the whole approach depends critically on the all-important step 5 above.
We define the following quantities:

a) P:L: the sum of all positive (negative) antidiffusive element contributions to node I

PI = E Ia1 (0, AEC,)
~dminJel

b) Qf: the maximum (minimum) increment (decrement) node I is allowed to achieve
in step 6 above

where U-"m " (defined below) represents the maximum (minimum) value the un-
known U at node I is allowed to achieve in step 6 above.

c) R+:

R±: = {min(1,Q+/P) if P+ >0, P- <0[ 0 if P ==O

Now take, for each element:
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Cel = min(element nodes) { R + if AEC>O, (13)
R- if AEC < 0.

Finally, we obtain U,"" in three steps

a) maximum (minimum) nodal U of Un and U'

x= (a n

U; mini (IUI

b) maximum (minimum) nodal value of element

U x rI (UA' U,

where A, B, ..., C represent the nodes of element el.

c) maximum (minimum) U of all elements surrounding node I:

"" = maxU
U jmin(

where 1,2, ..., m represent the elements surrounding node I.

This completes the description of the limiting procedure. Up to this point we have
been completely general in our description, so that eqns.(6)-(13) may be applied to
any FEM-FCT scheme. In what follows, we restrict the exposition to the finite element
schemes employed in the present work, describing the high and low-order schemes used.

The High-Order Scheme: Consistent-Mass Taylor Galerkin

As the high-order scheme, we employ a two-step form [18-20] of the one-step Taylor-
Galerkin schemes described in 116,17]. These schemes belong to the Lax-Wendroff
class, and could be substituted by any other high-order scheme which appears more
convenient, including implicit schemes. Given the system of equations (1). we advance
the solution from t" to t"+ ' = t" + At as follows:

a) First step (advective predictor):

= O" (14)
2 49x,

b) Second step

OF I+ 0"F1
Au" = u"+, _ U" = _At 2 + At 0xl (15)
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The spatial discretization of (14) and (15) is performed via the classic Galerkin
weighted residual method 18-201, using linear elements, i.e. 3-noded triangles in 2-D
and 4-noded tetrahedra in 3-D. For (15) the following system of equations is obtained:

Mc . AUn -- Rn, (16)

where AlC denotes the consistent mass matrix [18-20], AU the vector of nodal incre-
ments and R the vector of added element contributions to the nodes. As MC possesses
an excellent condition number, eqn.(16) is never solved directly, but iteratively, requir-
ing typically three passes [17]. We recast the converged solution of eqn.(16) into the
following form. which will be of use later on :

ML • AUh = R + (ML - Mfc) _ AU h . (17)

Here ML denotes the diagonal. lumped mass-matrix (see [17]).

The Low-Order Scheme: Lumped-Mass Taylor Galerkin plus Diffusion

The requirement placed on the low-order scheme in any FCT-method is mono-
tonicity. The low-order scheme must not produce any artificial, or numerical, 'ripples'
or 'wiggles'. It is clear that the better the low-order scheme, the easier the resulting
task of limiting will be. Therefore an obvious candidate for the low-order scheme is
Godunov's method [15). However, this scheme would be relatively expensive, and its
extension to unstructured grids remains unclear.

We have so far added 'mass-diffusion' to the lumped-mass Taylor-Galerkin scheme
in the context of FEM-FCT [13,14]. This simplest and least expensive form of diffusion
is obtained by subtracting the lumped mass-matrix from the consistent mass-matrix
for linear elements:

DIFF = cd . (MC - ML). Un. (18)

The element matrix thus obtained for 2-D triangles is of the form

-1 -1 -1Cd -(WC - MOOe = d -d Vol,,ei2- (19)12 {2i2
Observe that we cannot simply add this diffusion to the high-order scheme in order

to obtain monotonic results, as a multipoint-coupling of the right-hand side occurs due
to the consistent mass-matrix employed in the high-order scheme . The imposition of
monotonicity can nevertheless be achieved by using a lumped mass-matrix instead. As
the terms originating from the discretization of the fluxes F' in (1) are the same as in
(15), the low-order scheme is given by

ML - AU' = R + DIFF. (20)



Resulting Antidiffusive Element Contributions

Subtracting (20) from (17) yields the equation

ML • (ALh - -AU') = R + (ML - Mc) -AU h - R - DIFF, (21)

or, using eqn.(18)

AUh - AU t = AI1 (ML - MC) . (Cd _ U" + AUh). (22)

Note that all terms arising from the discretization of the fluxes F in (1),(15),(20)
have now disappeared. This is of particular importance if the antidiffusive element
contributions must be recomputed (small core memory machines), and real gas effects
are taken into account (table look-up times are considerable) or real viscosity effects
have to be included (Navier-Stokes equations).

Limiting for Systems of Equations

The results available in the literature 18-10] and our own experience [13,14] have
shown that with FCT results of excellent quality can be obtained for a single PDE.
However, when trying to extend the limiting process to systems of PDEs, no imme-
diately obvious or natural limiting procedure becomes apparent. Obviously, for 1-D
problems one could advect each simple wave system separately, and then assemble the
solution at the new time step. However, for multidimensional problems such a splitting
is not possible, as the acoustic waves are circular. FDM-FCT-codes used for production
runs [21,221 have so far limited each equation separately, invoking operator-splitting
arguments. This approach does not always give very good results, as may be seen from
Sod's comparison of schemes for the Riemann problem [23], and has been a point of
continuing criticism by those who prefer to use the more costly Riemann-solver-based,
essentially one-dimensional TVD-schemes .[1-61. It would therefore appear as attrac-
tive to introduce 'system character' for the limiter by combining the limiters for all

equations of the system. Many variations are possible and can be implemented, giving
different performance for different problems. We just list some of the possibilities here,
commenting on them where empirical experience is available.

a) Independent treatment of each equation as in operator-split FCT: this is the least dif-
fusive method, tending to produce an excessive amount of ripples in the non-conserved
quantities (and ultimately also in the conserved quantities).

b) Use of the same limiter (CeI) for all equations: this produces much better results,
seemingly because the phase errors for all equations are *synchronized'. This was also
observed by Harten and Zwaas [24] and Zhmakin and Fursenko 125] for a class of
schemes very similar to FCT. We mention the following possibilities:

i) Use of a certain variable as 'indicator variable' (e.g. density, pressure, entropy).

ii) Use of the minimum of the limiters obtained for the density and the energy
(CI = min(Ce1(density),Ce,(energy))) : this produces acceptable results, although
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some undershoots for very strong shocks are present. This option is currently our
preferred choice for transient problems.

iii) Use of the minimum of the limiters obtained for the density and the pressure
(Cel = min(Cl,(density),C,1(pressure))) : this again produces acceptable results,
particularly for steady-state problems.

NUMERICAL EXAMPLES

a) Shock over an indentation: The first problem considered simulates the transient
flowfield produced by the interaction of a strong shock with an indentation in the
ground. For this case, the shock Mach number was set to M, = 25, which corresponds
to a pressure-jump ratio of about 1:100. During the transient, pressure ratios as high
.s 1:1000 result. The problem statement, solution domain, spatial discretization and
solutions obtained are shown in Figs. la-le. Note that an adaptive refinement scheme for
transient problems (26] was used to reduce the overall storage and CPU requirements.

As the shock travels over the indentation, it produces a bow shock and a rar-
efaction (Figs.la,lb). Then, it collides with the right wall of the indentation and
bounces back, producing several shock/shock and shock/contact discontinuity interac-
tions (Figs.lc,ld). Observe the level of physically relevant detail that the scheme is
able to reproduce, e.g. the triple shock produced at T=0.12 (Figs.ld,le). The veloc-
ity pattern generated by these interactions has been magnified in Fig.le, and shows a
large residual vortex, as well as the different shock fronts and other discontinuities. We
remark that at all times the shocks are captured within 2 to 3 elements.

In the present case, we used as limiter for all equations the minimum of the limiters
computed for the continuity and energy equations. It is found, that for the strong shocks
present in such flowfields, even a pressure-undershoot of 0.1% will lead to negative
pressures. Therefore, the pressure is additionally limited artificially in order to be
positive (albeit small) at all times.

b) Steady supersonic flow past a circular cylinder: This problem involves inviscid
Mach 3 flow past a circular cylinder. The solution has been obtained by relaxing,
with local timesteps, the transient solution towards the final steady-state. During this
iteration process, the grid was adapted three times to the solution by using an adap-
tive mesh regeneration technique [27]. The final grid is shown in Fig.2a. A detail of
the pressure coefficient distribution is shown in Fig.2b, and the variation of pressure
coefficient along the centre line and over the cylinder surface is given in Fig.2c.

c) Shock-bubble interaction: This problem is included here to demonstrate a new ax-
isymmetric capability, and also to show that not only geometrically complex domains,
but also physically complex problems can be handled economically by the methodolo-
gies developed. Initially, a weak shock (M. = 1.29), coming from the left in Fig.3a,
travels into a bubble of heavier material. In the present case, the outer medium was
assumed to be air, while the bubble was assumed to consist of freon. Due to the higher
density of freon, the shock speed inside the bubble decreases (Fig.3b). While the outer
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shock bends over, the inner shock focuses at the right end of the bubble producing a
significant overpressure (Fig.3c), and initiating a small, circular blast wave (Fig.3d).

d) Steady supersonic flow over a flat plate: The fourth problem considered is the
steady state solution of supersonic viscous flow over a flat plate. The flow condi-
tions correspond identically to one of the cases considered by Carter [28], using a finite
difference scheme. The free stream Mach number is 3 and the Reynolds number based
on the plate length is 1000. The temperature of the plate is assumed constant. The
Sutherland viscosity law (see, e.g. Schlichting 129]) is used and the initial conditions
are chosen to be appropriate to the case of a flat plate impulsively inserted into the free
stream. The mesh used is displayed in Fig.4a, and the general features of the solution
can be appreciated in the density contour plots shown in Fig.4b. The variation of the
computed wall pressure distribution is given in Fig.4c.

CONCLUSIONS

It has been demonstrated how unstructured grids and high resolution schemes
may be combined, yielding FEM-FCT. The numerical examples indicate that a high
accuracy can be obtained economically for problems involving complex domains and/or
adaptive mesh refinement. Furthermore, the 'equation-splitting' employed in classic
FCT-codes [21,22] has been extended by coupling or 'synchronizing' the limiters of all
the equations involved, without taking recourse to more costly Riemann-solver-based
monotone schemes.

Extensions of the present work are under investigation and involve the development
of better limiters for systems of equations in the context of FEM-FCT, the extension of
FEM-FCT to implicit or semi-implicit time-stepping schemes [31], and the combination
of FEM-FCT with unstructured multigrid methods [32] for the rapid solution of steady
state problems.
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xa) Mesh'

b) Pressure coefficient distribution

Figure 2: Steady supersonic flow past a cylinder
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Figure 2: Steady supersonic flow past a cylinder

c) Variation of the pressure coefficient along the center line and over
the cylinder surface
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1. Introduction

Computational fluid dynamics (CFD) has always been at the forefront of the de-
velopment of numerical techniques for the simulation of physical phenomena. Several
reasons have contributed to this leadership among the many disciplines that can be
numbered under the heading of 'Computational Mechanics'. The first is the inher-
ently nonlinear behavior of fluids (advection, turbulence) which must be accounted
for. The second is the mixed hyperbolic/elliptic character of the partial differential
equations describing fluid motion. This mixed hyperbolic/elliptic character implies an
increased algorithmic complexity. The third reason is the need of engineers designing
new aeroplanes to obtain much more accurate performance estimates (and therefore
more accurate results for the simulations) than their colleagues designing bridges. The
fourth reason is the size of typical problems and follows from the first three. A problem
in structural mechanics is considered large if it exceeds 5. i01 nodes, whereas 'large' in
CFD means more than 5- i0s gridpoints.

For 25 years CFD grew around Finite Difference Methods, as these were simple to
understand and code, easy to vectorize, and the structured grids typically associated
with them described appropriately the simple geometric complexity of the fields that
were solved. However, as computers became bigger and faster, attempts were made
to simulate more and more complex flow domains, and it soon became clear that
structured grids where not flexible enough to describe these domains. It was at this
point in time that unstructured grids, and Finite Element Techniques - a natural way
of discretizing operators on them - entered the scene of CFD. Since then, unstructured
grids have become a driving force within CFD, and many new developments could
only become a reality by using them, such as domain splitting. adaptive refinement by
enrichment within the same grid, directional refinement and the solution of the flowfield
around a complete aircraft with engines.



However impressive the entry of Finite Elements into the field of CFD may have
been, many more developments are still needed in order to transform what are now
still rudimentary methods into efficient predictive engineering tools. The aim of this
paper is to point out what appear currently as the main shortcomings of Finite Element
algorithms, so as to concentrate the efforts to remove them. I cannot review the whole
literature in this field and cite every relevant paper, and therefore apologize at the
beginning to all those whose efforts may not seem to receive due credit. For other
review papers see [1-3].

The rest of the paper is divided as follows: after some general remarks on un-
structured grids, individual aspects which appear during the construction of Finite
Element algorithms are treated separately. These are: improved flow solvers, implicit
schemes, unstructured multigrid methods, better adaptive refinement schemes and grid
generation in 3-D. Then, the accent shifts from algorithmic considerations to coding:
graphics in 3-D, exploitation of supercomputer hardware and the reduction of memory
requirements.

2. Some General Remarks on Unstructured Grids

The accurate representation of arbitrary domains represents perhaps one of the
most challenging problems in CFD. The magnitude of this problem does not become
apparent in two dimensions, because

a) only a few singular points usually appear in the field (and may be ignored), and

b) due to the computer capacity now available a gross overmeshing in certain regions
of the domain can still be handled.

However, anyone trying to mesh complicated geometries in three dimensions with
structured grids will encounter singular lines (even for such simple components as wings
(see, e.g. [82])), and the unavoidable cost of overmeshing can no longer be ignored (the
result being coarse grids).

It is by now generally accepted that only unstructured grids are capable of describ-

ing accurately complicated geometries in 3-D. Two different levels of unstructuring are
possible:

a) macro-unstructuring, where blocks of structured grids are combined to form an
overall unstructured grid (these are the so-called zonal methods, see [4-7]), or

b) micro-unstructuring, in which case the point and element distribution can in prin-
ciple be random.

Although macro-unstructuring is being actively pursued by several groups (e.g.
[5,7]), the inherent structure at the difference-level precludes simple mesh refinement by

local enrichment (which destroys the grid structure). Major problems will also appear
when the region to be refined/enriched crosses zone-boundaries. Micro-unstructuring
does not have these inherent limitations, but also has its disadvantages:

- Programming complexity increases: if the central DO-loop of the simplest Finite
Element code encompasses 25 FORTRAN statements. the central DO-loop of Mac
Cormack's scheme [8] only requires 2 FORTRAN statements.
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- Due to the heavy use of GATHER/SCATTER operations, the maximum megaflop-
rate that can be achieved on vector-machines is lower than the one corresponding to
a structured-grid scheme (i.e. CPU-times increase). GATHER/SCATTER operations
require between 2.5-5.0 times as much CPU as simple DO-loops on machines like the
CYBER-205 and CRAY-XMP.

- Storage requirements increase, as element-to-node correspondences have to be stored.
Moreover, more temporary arrays are needed when gathering/scattering.

- As the grid possesses neither lines nor surfaces, no optimal implicit schemes (like ADI)
or splittings can be invoked, so that approximate factorization , now so popular among
Finite Difference and Finite Volume researchers [31-34] cannot be employed. This fact
also precludes the use of line/zebra/surface relaxation [41-43] as efficient smoothing
operators in the context of multigrid procedures.

- As the difference-stencils obtained on these grids are inherently multidimensional, no
extension of 1-D concepts into 2-D/3-D via splitting is possible. This renders most of
the work done for TVD-schemes and limitors over the past decade [11-18] useless for
Finite Element Methods. However, attempts to employ 1-D concepts along element
sides or faces have met with some success [18a].

However great these disadvantages of micro-unstructured grids may appear, the
advantages these grids offer by far outweigh them:

- any geometry can be described by them [9,10],

- mesh refinement either by movement [61-64], enrichment [65-75] or remeshing [76]
presents no problems, and

- domain splitting [108,109] for transient problems can easily be performed.

These facts were realized years ago by the NRL/LCP team for free surface hydro-
dynamics and multiphase flow problems [113,114], and the French research teams at
INRIA and Dassault. Much pioneering FEM-CFD work, leading to the first computa-
tion of transonic flow past a complete aircraft with engines [9] was performed by the
French teams. Recently, Jameson [10] also presented results using unstructured grids,
and this alone may indicate a turning point in the development of CFD.

After these introductory remarks, I will now focus on particular areas where rapid
progress is needed (and expected).

3. Imnroved Flow Solvers

The quest for the 'ultimate conservative scheme' is an old and tedious task, and
many a valiant CFD-knight has perished on the way to this holy grail. As stated
above, for unstructured grids the extension of schemes from 1-D to 2-D/3-D cannot be
performed by operator splitting. This means that only schemes that are truly multi-
dimensional in nature can be used. This renders many of the TVD-schemes developed
over the last decade useless for unstructured grids. Only two families of high resolution
schemes which can be used on these grids are known to the author. These are the
Petrov-Galerkin methods developed by Hughes et.al. [27-30], and the FCT-algorithms
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of Boris and Book [20-22] as first generalized to multidimensional problems by Zalesak
1231, and later extended in the context of Finite Elements by Erlebacher [24], Parrott
and Christie 124a] and L6hner et.al. [25,26]. 1 will only review the latter class, as I am
much more familiar with it, but urge anyone interested in Finite Elements to study the
work of Hughes and his group at Stanford.

3.1 FCT Defined

Whenever solving a set of conservation laws given by a system of partial differential
equations of the form

49- -+ aFi = Ui' 
(1)

where the advective fluxes F. play a dominant role over the viscous fluxes F., dis-
continuities in the variables throughout the field may arise (e.g. shocks or contact
discontinuities). It is well known that any scheme of order higher than one will pro-
duce nonphysical overshoots or ripples at sharp gradients or discontinuities, even if
the system of partial differential equations (1) is linear (so-called 'Godunov theorem').
Very often, particularly for mildly nonlinear systems, these nonphysical overshoots can
be ignored. However, for most problems, overshoots will eventually lead to numerical
instability, and therefore have to be suppressed.

The idea behind FCT is to combine a high-order scheme with a low-order scheme
in such a way that in regions where the variables under consideration vary smoothly
(so that a Taylor expansion makes sense) the high-order scheme is employed, whereas
in those regions where the variables vary abruptly the low-order scheme is favored.

The temporal discretization of Eqn.(1) yields

U + = U" + AU, (2)

where AU is the increment of the unknowns at time t = t" obtained for a given
scheme. Our aim is to obtain a AU of as high an order as possible without introducing
overshoots. To this end, we re-write Eqn.(2) as:

U + = Un + AU' + (AU h - AU'), (3)

or

Un + 1 = U t + (AU" - AU'). (4)

Here AUh and AU' denote the increments obtained by some high- or low-order scheme
respectively, whereas U' is the (ripple-free) solution at time t - t" + of the low-order
scheme. The idea behind FCT is to limit the second term on the right-hand side of
Eqn.(4):

Un + 1 = U' + Iim(AUh - AUI), (.5)
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in such a way that no nonphysical over/undershoots are created.

It is at this point that a further constraint, given by the conservation law (1) itself
must be taken into account: strict conservation on the discrete level should be main-
tained. The simplest way to guarantee this for the node-centered schemes considered
here is by constructing schemes for which the sum of the contributions of each individ-
ual element (cell) to its surrounding nodes vanishes, i.e. 'all that comes in goes out'.
This means that the limiting will have to be carried out in the elements (cells).

It is beyond the scope of this paper to describe the limiting procedure in more
detail. The interested reader may find it in [23-26]. However, I will point out some of
the problems still inherent in the method at its present stage of development:

- For systems of equations, no obvious or "natural' way of limiting has been identified
yet. Several possibilities have been explored, among them (for the Euler equations)
operator splitting (treating each equation independently), the use of averages of the
limitors for each equation, limiting based on some 'key variable' (pressure, entropy), and
others (see [26]). The author nevertheless feels that this weak point of FCT-schemes
deserves further theoretical investigation, taking into account Riemann invariants or
maybe even Flux-Vector or Flux-Difference concepts.

- Entropy is not always monotonic for FCT. This may be due to the low- order scheme
employed. It is obvious that the 'ultimate low-order scheme' is Godunov's scheme [11-
14], but this scheme is much more expensive than the simple smoothers currently in
use [25,25a,26]. A simpler, more efficient version of Godunov's scheme for unstructured
grids should be developed.

- Steepeners for contact discontinuities: as contact discontinuities are linear, any scheme
that does not possess a steepener will eventually flatten these out. The current version
of the author's FCT-code contains a very crude steepener, based on the argument that
the antidiffusive element contributions should only steepen gradients. Note that no
physical argument leads to a distinction of linear and nonlinear discontinuities. Some
kind of detection mechanism may usefully be incorporated for contact discontinuities.

4. ImRlicit Schemes

Implicit methods are needed when the fastest time-scale present in the system of
equations is not physically relevant for the problem at hand, and much lower modes
carry the important physical information. A typical example is the viscous flow past
an airfoil, where the speed of sound limitation in the cells covering the boundary layer
would impose severe timestep-restrictions for an explicit scheme without achieving any
further accuracy.

Among the many implicit schemes that have been developed over the years, only
the following three will be discussed further:

a) Briley and MacDonald 1311 (or Beam and Warming 1321) scheme: this very popular
scheme, in its basic form, can be re-written for unstructured grids. However. the
approximate factorization used for structured grids must be replaced by the solution
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of a full matrix (as in [33]). The solution of full matrices can only be attacked via
unstructured multigrid methods, which are discussed separately in the next paragraph.

b) Mac Cormack's implicit two-step procedure [341: this scheme makes heavy use of
upwind-differencing, thus always assuming a structured grid, and for this reason cannot
be used in the present context.

c) The Barely Implicit Procedure [35]: unlike the two former methods, the barely
implicit procedure treats only the sound waves implicitly by solving a modified Poisson
equation for the pressure. This implies that this scheme is only conditionally stable.
However, instead of solving five coupled equations in 3-D for the Euler equations, only
one needs to be solved. The resulting Poisson equation is again solved via unstructured
multigrid methods (see below). The Barely Implicit Procedure has already been shown
to be very useful for all compressible flows with low Mach-numbers, such as external
aerodynamics of cars, boundary layers and low-speed flames.

For the solution of chemically reacting flows, the time-scales associated with the
chemistry are orders of magnitude faster than the wave-speed scales of the fluid. The
recourse taken here is to treat point-implicitly [36-381 the 'chemistry', while solving the
'fluid flow' as before. For steady state problems, the inversion of the whole Jacobian at
each point seems to be the preferred solution algorithm [36,371, whereas for transient
problems the implicit-explicit approach descibed in [381 appears as more advantageous.
Both concepts can easily be incorporated into the Finite Element framework.

5. Unstructured Multigrid Methods

Multigrid methods combine two very desirable properties: they require the least
amount of operations to solve large problems (O(Nlog(N)) for a problem with N grid-
points), and their storage requirements are also low (again O(Nlog(N)) for a problem
with N gridpoints). In 1985, Lhner and Morgan [39,40] advanced the concept of
unstructured multigrid methods. It became clear that as the finest grid had to be
unstructured in order to accurately represent the domain, it could not be obtained by
subdivision of some coarser grid. Instead, a set of unrelated coarsening grids had to be
employed. The reason why multigrid methods should still work on sets of unrelated,
unstructured grids, - the same argument on which all multigrid methods base the con-
vergence rate estimates - is that if the residual is smooth, any coarser grid should be
able to 'see' it. In all other aspects, the theory follows exactly the lines of traditional
multigrid methods [41-43].

5.1 The Elliptic Case

The solution of elliptic PDEs via multigrid methods is by now well understood [41-
431, and rigorous theoretical estimates for the expected convergence rates are available
[421. The main difficulty that can appear for unstructured grids lies in the construction
of efficient smoothers, as neither line- nor plane-relaxation are possible. If Jacobi-type
smoothers [43] are employed, the convergence rate of the highest modes can degrade
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seriously for highly stretched elements or diffusion tensors in which one direction is
dominant [44]. Three different smoothing schemes are known to avoid this problem:

a) Use of supersteps: here, the simple Jacobi-smoothing is over-and underrelaxed al-
ternatively using a Chebyshev-series 139,40,44-46]. Although not advisable for highly
stretched grids, e.g. stretchings beyond 1:100, this method is very simple to code and
lends itself easily to vectorization.

b) Solution of local problems: Instead of a tighter coupling of modes via line- or plane-
relaxation, groups of elements are relaxed, producing the desired effect [47]. This
method is applicable in all cases, but may not be vectorizable and also requires some
software- overhead.

c) Element by element preconditioning: although the transfer of information in the
element by element iterative solver [48,49] is local in nature and therefore cannot com-
pete with multigrid methods, this scheme may prove useful as a preconditioner. The
compression of the eigenvalue spectrum is achieved by multiplying the system matrix
with the (local) element-matrix inverses where appropriate. Vectorization of this type
of method should also be investigated further.

5.2 The Hyperbolic Case

For the hyperbolic case, the theory of multigrid methods is still far from complete.
Although Ni's method [50-52a,551 has been shown to work well in many cases, Jameson's
multigrid solver [53,54] seems to emerge as the more reliable. This is to be expected,
since the Runge-Kutta timestepping allows more possibilities for choosing appropriate
'damping-sequences' than the Lax-Wendroff schemes. Of course, hybrid schemes which
make use of both approaches can be devised [52a]. The combination of unstructured
multigrid methods with Runge-Kutta timestepping for the Euler equations may be
found in [56,57].

6. Better Adaptive Refinement Schemes

In nearly all advection-dominated problems discontinuities or regions with sharp
gradients appear. The regions in which the flow variables vary abruptly are usually
small and are surrounded by large portions of the field in which the flow varies smoothly.
It therefore seems attractive to locally and adaptively refine the mesh where needed,
until a preset tolerance for the error has been achieved. Because of the obvious advan-
tages of adaptive refinement, this field is currently receiving increased attention in the
literature [58-59]. Any adaptive refinement scheme consists of three different stages:
determining what we want to achieve by refining the grid, developing an error indica-
tor/estimator to detect the regions to be refined, and a refinement strategy, such as
movement, enrichment or remeshing.

Instead of reviewing all the approaches that have so far been devised, I will limit
myself to the following remarks:
a) Typically, one aims to have an equidistribution of the 'error' throughout the grid
(see 158-81]).
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b) Whole families of error indicators, based on different concepts, have been shown to
be useful. Among the most popular are those based on the change of some 'indicator-
variable' (e.g. entropy 1711 or Mach-number 1641), those based on interpolation theory
estimates [62,65-70,80,81] and the indicators based on Richardson extrapolation [78]
(but see 1701 for a more complete review).

c) For the accurate resolution of the flowfields at or near discontinuities p-enrichment
(whereby the polynomial order of the approximation is increased) does not seem to be
attractive. Besides, p-enrichment implies a considerable increase in software complex-
ity. However, it may prove useful for boundary layers, where an essentially smooth
flowfield needs to be resolved.

6.1 More Reliable Error Indicators

In a recent paper, L6hner [81] formulated a modified interpolation indicator
which was specifically intended for flowfields in which discontinuities of widely varying
strength are present. For a typical error estimator based on interpolation theory one
would estimate the second derivatives at points, for linear elements of constant length
h in 1-D:

ei = h-2 Ui+1 - 2U + Ui- 1[ (6)

If several discontinuities of widely varying strength are present in the domain,
one observes that the strongest will 'swallow' all the added elements (in the case of
enrichment) or 'draw' all elements to itself (in the case of movement). In order to avoid
these undesired tendencies Eqn.(6) is modified as follows:

= Ui+1 - M + U. - 1 (7
=U,+ 1 - Ud + Iu, - U.- 1 + c[IU,+lI +21U t + Iu_-1I1 (7)

Note the following properties of this modified error indicator:

- By dividing the second derivative by the 'jumps' (gradients) the 'eating-up' effect in
the presence of a very strong shock is avoided because only the value of the normalized
H2-seminorm is of importance, not the magnitude of the H2-seminorm itself. It is
interesting to note that normalising the second differences by the first differences is, in
essence, what is done in TVD schemes.

- Normalizing in this way also has the advantage that the error indicator becomes
dimensionless, so that more than one 'key-variable' can be used without dimensional
problems.

- Moreover. the modified error indicator is now bounded (0 < E < 1), so that preset
tolerances can be employed (this is of particular importance for transient problems).

- The terms following c are added as a 'noise' filter in order not to refine 'wiggles' or
'ripples' which may appear due to loss of monotonicity. The value for c thus depends
on the algorithm chosen to solve the PDEs describing the physical process at hand.
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The generalization of this error indicator to multidimensional situations may be
found in (811. Although this modified error indicator has proved very reliable in practise,
the author feels that more theoretical work is needed.

6.2 Directional Refinement

At the 24th AIAA Aerospace Sciences meeting L~hner and Morgan [751 introduced
the concept of directional refinement. It is based on the observation that in most
flowfields the regions that ought to be refined are of lower dimensionality than the
physical space in which the solution is sought (e.g. shocks in 2-D/3-D). Therefore,
if thin, elongated elements parallel to these discontinuities could be generated during
the adaptive refinement process; considerable savings in CPU and storage would be
realized without sacrificing acLuracy.

The first algorithm devised for this purpose was based on mesh enrichment [75],
and turned out to be storage, CPU and software intensive. Since then, Palmerio and
Dervieux [641 have tried to incorporate this concept into a mesh movement framework,
while Peraire et.al. [76] have advanced the concept of refinement by remeshing. This
last concept represents a new and powerful refinement strategy, combining in a very
elegant way the advantages of mesh enrichment (such as versatility by the intrcduc-
tion of points and a coarse initial grid for steady state problems) and mesh movement
(which produces the desired element shapes near shocks) . If it proves useful in 3-D
(the search-problem needs to be addressed here), it may completely replace movement

and enrichment as refinement strategies. Another major area of applications for fast
remeshing algorithms is given by 3-D Free-Lagrange Methods [77], where the restruc-
turing of the grid currently represents a major problem. Remeshing would be an ideal
solution in this case.

6.3 Adaptive Refinement for Transient Problems

When solving transient problems, in which only a few discontinuities appear, adap-
tive refinement can also be useful in reducing storage and CPU-requirements. However.
in comparison to steady state problems, further constraints need to be placed on the
refinement algorithms in order to realize significant savings:

a) As the grid adaptation has to be performed many times, the adaptation algorithm
must be fast, and therefore must lend itself to vectorization/parallelization.

b) As the grid adaptation process becomes an integral part of any code, the algorithm
should not be storage intensive.

c) As the feature that has been refined may pass again (e.g. a shock reflection), the
original grid should be recovered after the feature has passed.

So far, the only successful, general-purpose algorithms based on unstructured grids
meeting these requirements have employed the classic h-enrichment strategy (subdivi-
sion of elements into smaller ones without raising the polynomial order of the approx-
imation) [80,811, allowing only one level of refinement/derefinement per grid modifica-
tion.
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Of course, directional remeshing or even movement could be incorporated for those
cases in which the discontinuities are fairly straight (for curved shocks that interact
with each other only classic h-enrichment will yield acceptable solutions), but the inter-
polation problem must be solved (otherwise the shock-speeds will be wrong). Another
potential problem may arise due to the (apparent) non-vectorizability of the remeshing
algorithm. Obviously, this whole topic of adaptive refinement for transient problems
represents one of the most dynamic ones in CFD, and many further innovations are
expected.

7. Grid Generation

The fast generation of grids for arbitrary domains in three dimensions has been
the focus of much research in recent years. A variety of different approaches have been
investigated. The most promising seem to be: the macro-element approach 184,84a],
Watson's algorithm [86-91] for Voronoi tesselations combined with a point distribution
obtained by superposition of local (structured) grids [10], modified octree [93], on an
advancing front [76,85,92], and from a regular background grid [94]. All of them have
advantages and disadvantages, and none has been fast and simple enough to generate
efficiently grids of the size needed in 3-D aerodynamic simulations. Most of these
schemes have been used to generate grids of up to a few hundred elements, where search-
overheads and storage limitations don't become noticeable. Even the generation of a
small mesh of only 12000 gridpoints, surely close to the minimum needed to describe
a Boeing 747, requires half an hour of CRAY-time [101. However, one has to bear in
mind that the first algorithms for the solution of partial differential equations were
developed nearly 25 years ago and since then have been improved by hundreds of
researchers worldwide. Grid generation for unstructured grids in 3-D, on the other
hand, has been pursued for no more than 3-4 years by only a few individuals.

Reviewing the literature, the following conclusions can be drawn:

- Partially unstructured grids (the macro-element approach [84,84a]) do not offer
enough flexibility to serve as the basis of a general mesh generator for complex do-
mains, unless some major breakthrough in interactive graphical display is achieved.

- Use of regular background grids [94] is not advisable for unbounded problems, as
element stretching and point clustering are not accommodated easily. However, this
technique may prove useful for internal flow problems.

- The generation of points via superposition of local grids (mappings) [10] seems to
offer the greatest flexibility at minimal cost. The point distribution for each local grid
is obtained algebraically and is therefore very fast. The grids are chosen from a menu
of pos.ible local grids.

- The tetrahedrization of the domain via Watson's algorithm [86,87], as employed and
modified in [10,88-91], is not advisable, as this algorithm is

a) suboptimal, requiring O(N 1 "5 ) operations, and

b) the treatment of voids (wings, fuselage, etc.) in the fluid domain becomes both grid
logic and CPU-intensive.
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- It seems attractive to pursue the element generation on an advancing front i la van
Phai 1921, combining it with a fast neighbor finder (see, for example 139,95,95a]).

8. Granhics in 3-D

Rapid, userfriendly, flexible graphical display of results is a basic tool during all
stages of CFD: grid generation, debugging and evaluation of results are rendered im-
possible without it. Yet, up to now, software packages tailored to the specific needs of
CFD have been developed only for structured grids (see, e.g. [961). There are inherent
difficulties to any display of 3-D field data:

a) only planes or. surfaces can be displayed, but never the whole field (this is a funda-
mental difference from 2-D simulations),

b) if the user specifies a surface that happens not to be a particular plane of the
grid, 3-D interpolation becomes unavoidable. This implies increased search-operations
(CPU-times), particularly for unstructured grids. Fast search algorithms and plotting
algorithms for arbitrary (curved) surfaces with random point distributions need to be
developed.

Fortunately, in modern 'graphics engines' like the Evans & Sutherland, Iris and
Sun- workstations, the main CPU-intensive operations such as translation, rotation
and hidden-line removal are hardware-coded, so that animation becomes possible. The
main bottleneck appears to be the low tranfer-rate between 'host-CPU' and 'graphics
engine'. Experience with an Evans & Sutherland attached to a VAX-780 indicates
that for large 3-D problems the wait times for reading in and processing the data can
become restrictive. This is not surprising, as the machines on which the hydro-codes
are run are between 200-1000 times faster than a VAX-780. Faster and bigger pre- and
post-processors are needed. The ratio between the hydro-computer and the graphics-
computer should come down to about ten to one.

9. Exploitation of Supercomputer Hardware

However good a method may be, if it does not lend itself to some form of paral-
lelism, its future will always remain a dubious one. The speed-up ratio between a code
that exploits the machine hardware and one that does not lies between 1:10 and 1:20 on
today's vector machines. This performance ratio will go up drastically when massively
parallel computing becomes available (97,1001. Fortunately, the bigger the problem to
be solved, the easier it is to exploit some inherent parallelism of an algorithm.

9.1 Vector Machines

On vector machines the important factors that determine the performance of an
algorithm are DO-loop length and contiguity in memory (even on a CRAY !). The
typical Finite Element code will have 'element subroutines'. This means that for each
element, the contributions to the right-hand side or the stiffness-matrix are computed
in turn. The vector-length thus obtained is typically of order 8-10, far too short to
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exploit vector-machine hardware. The only way to achieve acceptable vector-lengths
is to perform the assembly process on groups of elements, possibly the whole grid at
once. This means that one-element-type codes should be favored, in contrast to the
more usual many-element-type code now in use in industry.

Three different types of DO-loops are most often encountered:

a) Loops over the same type of data: these are loops which only involve one type of
data (either point or element data), and are the 'favorites' of vector machines.

b) GATHER-loops: this type of loop appears when point information needs to be
processed at the element level (a point may be shared by several elements). Most
vector machines have hardware-tailored GATHER devices, but this type of loop will
nevertheless run between 2.5-5.0 times slower than type a).

c) SCATTER-ADD: these loops occur when assembling element contributions at points
(e.g. formation of a right-hand-side vector). As a point may receive contributions from
several elements in the same loop, the simple SCATTER operation is not sufficient
(see 1101-1031 for a more complete description of this problem). Coloring schemes have
to be devised, and the original loop (over all the elements) has to be broken up into

groups of elements, so that the use of straight SCATTER-operations becomes possible.
This type of loop will run at roughly the same speed as the GATHER-loop.

9.2 Parallel Computing

When speculating about parallel computing, one ought to distinguish between
mildly parallel machines (up to 10 processors) and massively parallel machines. The
author only has experience with the former type of machine, and therefore the latter
one will not be discussed further.

Examples of mildly parallel machines are the CRAY-XMP-48 and the systems
of array processors attached to a host machine. At NRL-LCP one such system, called
GAPS (Graphical Array Processor System) is now in use for production runs. It consists
of four array processors attached via an APTEC to a VAX-780 and a Tektronix screen.
The runs are monitored online on the Tektronix via the VOYEUR-software package,
which allows study and evaluation of active data from mass-memory while the code
is running. The speed attained with the system as it stands now is roughly one third

of a CRAY-XMP-12, so that 8 hours of CRAY-time a day can be achieved. This is
typical for this kind of set-up (see 1104-107 for a more detailed description of GAPS
and further examples).

From a user's point of view, the main difficulties facing the development of codes
on such a system are the poor FORTRAN capabilities and the very small local memory
of the presently available array processors, as well as the very bad debugging software.
It therefore only pays off to re-write codes which have been thoroughly tested and will
undergo no major modifications for these machines. In an area as dynamic as CFD.
few codes ever make it to an array processor. However, the LCP FCT models have,
and with great success [104,1051.
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From a theoretical point of view, all algurithms which split the domain into suf-
ficiently large 'subdomains' are suited for mildly parallel machines. Examples of this
kind are simple operator splitting (e.g. line by line, as long as the line is big enough),
or the growing family of domain splitting algorithms [108,109).

10. Reduction of Memory Requirements

As stated earlier, schemes operating efficiently on unstructured grids require more
memory than their structured-grid counterparts. This should not surprise us, because:

a) Much more information needs to be stored for an unstructured grid (e.g. the grid-
points corresponding to each element).

b) The typical vector length extends over the whole grid, so that all temporary (scratch)
arrays, which are needed for vectorization, are comparatively long.

c) For structured-grid codes operator splitting is usually invoked, which means that the
typical vector lengths are of the order of one line or plane, so that the space allocated
for temporary arrays is negligible.

d) The GATHER/SCATTER-operations associated with unstructured grids require
additional temporary arrays.

Typical figures quoted in the literature lie between 310 [1101 and 610 [10] words
per gridpoint, while the author's 3-D FEM-FCT code requires around 525.

Although the current trend in supercomputing indicates that the memory of these
machines is increasing at a faster rate than the CPU (the CRAY-2 memory has 256
megawords of memory but is still slower than a CRAY-XMP-48), experience in a mul-
tiuser environment indicates that for fast turnaround, it pays to sacrifice CPU for
memory.

Among the possibilities that can be pursued in order to 'educe memory require-
ments, we mention:

a) Careful coding: an obvious possibility, but one that is usually considered only after
a code has been shown to work (i.e. at a stage where as little as possible should be
changed). The author was able to reduce the memory requirements for his 3-D FEM-
FCT code from 525 to 315 words per gridpoint, while incurring a CPU increase of only
20%.
b) Splitting into subdomains: the peak efficiency of vector-machines is achieved for
vector lengths that are only a fraction of the total number of gridpoints typically
encountered when solving 3-D problems. The idea is then to save as much storage
on temporal arrays as possible, performing all algorithmic steps (formation of right-
hand sides, limiting, etc.) on subdomains. Experience here indicates that memory
requirements can be reduced by about 50%, at the expense of some additional CPU
and considerable code complication (the number of statements is increased by about
100% [1031).
c) Encasement of the unstructured grid in a structured grid: here, unstructuredness
is only allowed close to the body, where the highest geometrical/physical complexity
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is expected. At wider distances from the body a structured grid is employed. This
approach holds considerable promise of reducing memory requirements by more than
an order of magnitude, but will require sophisticated programming and mesh generation
capabilities. It is currently pursued by several groups [111-112].

11. Conclusions and Outlook

The present review indicates that the following developments need to take place,
as they represent the greatest shortcomings of FEM-CFD:

Finite Element Algorithms:

- Optimal limiting for systems of equations in the context of FEM-FCT [25,25a,26].

- Improved low-order schemes for FEM-FCT.

- Steepeners for unstructured grids.

- Extension of block-implicit methods [31-33] to unstructured grids. This mainly re-
quires efficient smoothers to drive the unstructured multigrid solvers 1331.
- Extension of the Barely Implicit Correction [35] scheme to unstructured grids. Effi-
cient smoothers to drive the unstructured multigrid solvers have already been developed
for the resulting Poisson equation.

- Further theoretical validation of error indicators.

- Development of efficient search procedures for adaptive remeshing [76] in three di-
mensions.

- Extension of adaptive remeshing and other directional refinement methods to tran-

sient problems and Free-Lagrange codes. The placement of further points, and strict
conservation if interpolation is required remain open questions.

- Combination of the 'advancing front' concept [92] and a fast neighbor finder [44,95,95a]
for the efficient generation of grids in three dimensions.

Finite Element Codes:

- Unified input/output software for FEM-codes.

- Faster pre/post-processor hardware.

- Coding of FEM-algorithms for parallel machines.

- Reduction of memory requirements by encasement of the unstructured grid inside a
structured (outer) grid, or the use of structured grids inside the boundary layer regions

[1111.
Many other small improvements, not mentioned in the list above, are of course

possible. The author has only tried to identify the main trends in FEM-CFD.

Although in comparison to structured grids everything seems more complicated
when done on unstructured grids, the rewards of all the mentioned possible improve-

ments should be well worth the efforts. We can without speculation look forward to

the day when the computation of any new configuration will be accomplished not in a
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matter of weeks but of days. At this time we can only follow the poet in saying: the

best of unstructured grids and Finite Elements in CFD is yet to come.
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1.Abstract

We present the extension of Flux-Corrected Transport Schemes (FCT) to unstruc-
tured grids. The spatial discretization is performed via finite elements. In particular
we have chosen triangular elements in two dimensions. The limiting procedure is based
on Zalesak's 1181 extension to more than one dimension of the FCT-schemes of Boris
and Book [13,19,201. The resulting scheme, FEM-FCT, is capable of resolving mov-
ing and stationary shocks within two elements, and several examples are given that
demonstrate the accuracy attainable, even for complicated geometries.

2. Introduction

The solution of partial differential equations with dominant first derivatives (ad-
vection dominated problems) on domains of complex geometrical shape is of great
practical importance in many branches of science and engineering. The transport (pas-
sive advection) equation, the inviscid Burgers equation, the shallow water equations
and the Euler and Navier-Stokes equations fall under this category.

Finite difference and finite volume methods for the solution of this class of prob-
lems have reached a high degree of sophistication and are currently in widespread use
[1-51. However, due to the structured grids typically associated with these methods,
the treatment of complicated domains [6] and the use of adaptive mesh refinement [7]
become inherently difficult. Finite element methods, on the other hand, are usually
implemented on completely unstructured grids, with consequent reduction in the com-
plexity of mesh generation [8,9] and a straightforward implementation of adaptive mesh
refinement [101. Moreover, finite element methods have now been shown [11,12] to solve
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convective PDEs as accurately as conventional finite difference/ finite volume methods.
Thus, it now seems appropriate to explore the possibility of high resolution monotone
schemes for unstructured grids. One-dimensional splitting is inhibited by the irregu-
larity of the grid, so the scheme employed must be truly multi-dimensional in nature.
A variety of high-resolution schemes can be found in the literature [13-171, but only
Zalesak's generalization [181 of the 1-D FCT-schemes of Boris and Book [3,19,20] can
be considered a multi-dimensional high resolution scheme. It therefore appears natural
to extend these ideas to a 'finite element methodology for flux-corrected transport':
hence the name FEM-FCT.

In a recent paper, Parrott and Christie [25] have proposed such an approach and
have shown how it may De implemented for the case of scalar advection in two dimen-
sions. Here, we consider the extension to systems of equations and demonstrate the
viability of the process by solving a number of examples.

3. FEM-FCT defined

As the present algorithm was to a large extent inspired by Zalesak's paper [18], we
will follow his exposition closely. In any finite element scheme, the notion of 'flux' as
used by Zalesak disappears, and must be replaced by 'element contribution to a node
(EC)'. Thus, as may be seen from Fig. 1, element El contributes to nodes I,J,K, while
node I in turn is affected by contributions from the elements El-E5.

Any FCT-technique consists of the following six steps:

1) Compute LEC: the 'low-order element contributions' from some low order
scheme guaranteed to give monotonic results for the problem at hand;

2) Compute HEC: the 'high-order element contributions', given by some high order
scheme;

3) Define the 'antidiffusive element contributions':

AEC = HEC - LEC

4) Compute, for each gridpoint, the updated low-order solution:

Uj, = Un + Z LEC, I =1,...,NPOIN, (I)

where the summation extends over all elements surrounding node I (see Fig. 1),
NPOIN is the total number of points in the grid, and the superscript I was intro-
duced to define the low-order solution.

5) Limit or 'correct' the AEC in a manner such that Un+l as computed in step 6
below is free of extrema not also found in U1 or Un

AECc = CeI * AEC, 0 <_ Ct : 1; (2)
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6) Apply the limited AEC to the previously calculated low order contributions:

U 1 = U', + EAEC. (3)
el

to obtain the solution at the end of the time-step.

4. The limiting procedure

We wish to limit the element contributions in such a way that U" +1 does not
exceed some maximum U"' nor falls below some minimum Umit n . We leave the
determination of UG sx, UmitI until later. Using Zalesak's notation, we define the six
quantities:

+

Pi-: the sum of all positive (negative) element contributions to node I:

j+ = E(,EC), (4)

where the summation extends over all elements surrounding node .

Qy: the maximum (minimum) increment node I is allowed to achieve in step 6
above:

+ a

Q7 = Uii" - U1. (5)

+ (min(1,Q+/P + ) if P+>0, P-<0R_:= (6).1o if P!-= 0

The last equation ensures that no greater portion than that given by the high-order
scheme is added, and could be removed if artificial steepening is desired. Assuming
that Q+ > 0 (it must be), all three of the above (+)-quantities are positive, and R+

represents the least upper bound on a coefficient which must multiply all the positive
element contributions to node I in order to guarantee no overshoot at node I. The same
applies to R- with respect to undershoots.

We have to take the most conservative estimate in order not to create any numerical
over/undershoots arising from the high order scheme. Within each element, we compute

C'I = min(element nodes) R +  if EC > 0, (7)
1,R- if EC < 0.

Mi.

Finally, we obtain UmI in three steps:
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a) maximum (minimum) nodal U of U" and U1 :

U - {min}(U,,U ) (8)

b) maximum (minimum) of element nodes:

u.. = ,I,., m j UU,...,I U ), (9)

where the count extends over all nodes of element el;

c) maximum (minimum) U of all element surrounding node I:

UI'" t a ) ( ,U . ..,U;&),1 (10)

where the count extends over all elements surrounding node I.

This completes the description of the limiting procedure. Up to this point we have
been completely general in our description, so that eqns.(1)-(10) may be applied to any
FEM-FCT scheme. In what follows, we specialize the exposition to the FEM-schemes
employed in the present work, describing the high and low-order schemes used.

5. The high-order scheme : Consistent-Mass Two-step Taylor Galerkin

As the high order scheme, we employ a two-step form of the one-step Taylor-
Galerkin schemes described in [21,22]. The method has been expounded thoroughly in
[10]. We will only give a brief description of it here. Given the system of equations

au OF'i + T.- = 0, (1

we advance the solution from t" to t"&+ = t0 + At as follows:

a) First step : F (12)
2 - . - If (12)

b) Second step :

AUn = Un+ - U =-t(13)

The spatial discretization of (9) and (10) is then performed via the classical
Galerkin weighted residual method [23,24]. We remark that at t+ = t" + At
both U and F are interpolated using piecewise constant functions, while at t" and t"n 1
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linear shape functions are employed [101. In this way the values of U+2, F + may

be readily obtained at element centers (no matrix operations are involved). For (13)
the following system of equations is obtained:

M,- AU n -- R" n(14)

where M, denotes the consistent mass matrix [23], AU the vector of nodal increments,
and R the added element contributions to each node. As M, posesses an excellent
condition number, Eqn.(14) is never solved directly, but iteratively:

ML.(AU l+-AUn)=R-M.AU', i=,..,niter, AU 4 =O. (15)

Here MI denotes the (diagonal) 'lumped' mass-matrix [231, obtained by adding all off-
diagonal elements in a row of M, to the diagonal (thus conserving mass). Typically,
niter=3 is sufficient [221. We finally recast the converged solution of Eqn.(15) into the
following form, which will be of use later on :

M-AU h = R- (MI - M,)" AUh. (16)

Here we have introduced the superscipt..'h' for high-order scheme.

6. The low-order scheme: Lumped-Mass Taylor Galerkin plus Diffusion

The requirement placed on the low order scheme in any FCT-method is mono-
tonicity. The low order scheme must not produce any artificial, or numerical 'ripples'
or 'wiggles'. In the original SHASTA-code of Boris and Book [13] this was achieved by
adding a 'viscosity'-term in 1-D to a Lax-Wendroff-like scheme of the form

d = cj - T(h -2 ) (17)

,. )

This gives a contribution of the form

Di = cd. (U1 -l - 2. U + Ui+) (18)

for a regular spacing of gridpoints with element length h. Zalesak employed the donor-
cell scheme as the low-order scheme. In the present situation, particularly for grids
with distorted elements in more than one dimension, equations (17),(18) must be re-
interpreted as an 'averaging' operator, which may be obtained by adding a modified
Laplace-smoothing of the form

d C ., a x:i aul (19)

NK denotes the shape-function of node K. Observe that this 'diffusion' is purely nu-
merical and also grid-dependent. Its function, as stated previously, is to ensure the
monotonicity of the low-order solution.
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The FCT technique adds to the high order scheme enough of this diffusion to
obtain monotonic results for the problem at hand. However, as a consistent mass-
matrix is employed in the high-order scheme (which implies a multipoint-coupling of
the right-hand side), the imposition of monotonicity becomes impossible. Monotonicity
can nevertheless be achieved by using a lumped mass-matrix instead. As the terms
originating from the discretization of the fluxes F in (8) are the same as in (11), the
low order scheme can then be written as

M,. AU' = R + D, (20)

where we have introduced the superscript '' for 'low-order'-scheme.

7. Computation of the antidiffusive element contributions

Subtracting (20) from (16) yields the equation

A . (AU" - AU' ) = R + (M - M,) -AU" - R - D, (21)

or
M -(AUh - AU ) = (M - Me). AUh - D (22)

Note that all terms arising from the discretization of the fluxes F in (8),(16),(20) have
now disappeared.

8. Numerical exampIes for a single PDE

8.1 Passive advection of a square wave

This is the same example as was used by Boris and Book [13] to demonstate the
accuracy and monotonicity of their FCT-schemes. As the equation being solved (the
transport equation) is linear, both amplification- and phase-errors can be identified
easily. The wave extends over 20 gridpoints, and is convected with a Courant-number
of C=0.2 for 800 steps. In Fig. 2 we compare the solutions obtained when using, in
the high-order sheme, a lumped mass-matrix and a consistent mass-matrix. Observe
that the consistent mass-matrix gives better phase-accuracy. After 800 steps the initial
discontinuity is spread over only 5 gridpoints.

8.2 Shock Dropafation for the Burgers equation in 1-D

This nonlinear advection example is used to assess the performance of the scheme
for those cases in which inherent steepening (overtaking characteristics) is present.
Initially, the unknown is set to u=1.0 to the left of the shock, and to u=0.0 elsewhere.
A uniform grid with gridsize h=1.0, and a timestep of At = 0.2 is employed. In Fig.
3 we compare the solutions obtained when using, as the high-order sheme, a lumped
mass-matrix and a consistent mass-matrix. Observe that again the consistent mass-
matrix gives better results, producing a shock over at most two gridpoints.
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8.3 Passive advection in 2-D

This is the same example that Zalesak [181 used to test his FCT-algorithms. Again,
as the equation solved is linear, both amplification and phase-errors can be identified
easily. The problem statement may be found in [18]. The mesh used for this case, as
well as the results obtained are depicted in Fig. 4.

8.4 Propagation of a linear discontinuity in 2-D

This steady state examle, taken from [26], is used to test the 'spreading' due to
inherent diffusion of a discontinuity being propagated in a constant velocity field. The
problem statement, as well as the solutions obtained for different flow angles are shown
in Fig. 5. Observe that no spreading is obtained for the algorithms presented here,
indicating full second-order spatial accuracy.

9. Limiting for systems of equations

As evident from the results presented above, very good results can be obtained
in one and two dimensions for a single PDE. However, when trying to extend the
limiting process to systems of PDEs, no immediately obvious or natural limiting pro-
cedure becomes apparent. So far, the FCT-codes used for production runs [27,28] have
limited each equation separately, invoking operator-splitting arguments. However, this
approach does not always give very good results, as may be seen from Sod's comparison
of schemes for the Riemann problem [29], and has been a point of continuing criticism
by those who prefer to use the more costly Riemann-solver-based TVD-schemes [14-
17]. It would therefore seem preferable to introduce 'system character' for the limiter
by combining the limiters for all equations of the system. Many variations are possi-
ble and can be implemented, giving different performance for different problems. Our
numerical experience for the compressible Euler equations indicates that

a) treating each equation independently as in operator-split FCT is the least dif-
fusive method, tending to produce an excessive amount of ripples in the non-conserved
quantities (and ultimately also in the conserved quantities);

b) using the same limiter (C. 1) for all equations produces much better results,
seemingly because the phase errors for all equations are 'synchronized'; for the Euler
equations the following two limiters seem to perform best:

bl) just the limiter obtained for the density (continuity equation): this may pro-
duce some undershoot at shock-fronts in velocity and energy, but is very economical;

b2) taking as limiter for all equations the minimum of the limiters obtained for the
density and the energy (Ca = min(Ca(density), C.I(energy))) : this produces better
results than the previous limiter, but also requires more operations.

10. Numerical results for the Euler equations.

10.1 Sod-problem (1-D):

7



This classic example, taken from [291, solves the Riemann-problem for the com-
pressible Euler equations in 1-D. The same grid as in [29] is employed, and the solutions
are shown at the same time (t=14.75). In Fig. 6 the results obtained by taking as lim-
iters the operator-split case, the density and the rmin(densityenergy) are shown. As
one can see, the last limiter achieves the best overall results.

10.2 Circular Blast-wave (2-D): The problem statement, as well as the solutions
obtained are shown in Fig. 7. A quadrant of a cylinder in the lower left hand corner
was given a density of 10.0 and a pressure of 40.0, while the rest of the computational
region was filled with density 1.0 and pressure 1.0. Because all grid points inside radius
5.1 were disturbed and all gridpoints outside were not, the surface of the cylinder on the
finite element grid is not completely circular. This case was run to test the symmetry
or 'circularity' of the numerical solution. The density for all points in the domain is
shown in Fig. 7d plotted versus the radial distance from the origin, indicating a better
symmetry than that usually achieved by time-split codes.

10.3 Shock-reflection at a wall:

This problem has also been used extensively to asess the accuracy of schemes
used for the solution of steady state problems [30,311. The problem statement, as
well as the pressure distributions obtained for the original Taylor-Galerkin scheme and
FEM-FCT are shown in Fig. 8. Observe that the shocks are captured so sharply
that the underlying grid structure becomes visible in the contour-plots. The steady
state solution for this problem took 300 iterations, the residuals dropping 4 orders of
magnitude. Fig. 8d depicts the variation of the density along the line y=0.5, and, as
one can see, no over/undershoots are present.

10.4 Flow past an aerfoil in transonic flow

This example shows that acceptable solutions can be achieved with the present
algorithm for the transonic flow regime. The case at hand is a NACA-0012 aerfoil,
and the Mach number at infinity and angle of attack were set to Minf = 0.85 and
a = 0.0. The grid-point distribution was taken from Jameson's FLO52-code [32],
and corresponds to a 96 by 16 mesh. The pressure distributions at steady state are
depicted in Fig. 9, and the cp -distributions on the airfoil-surface obtained for FEM-
FCT and the original two-step Taylor-Galerkin scheme presented in [10] is given in
Fig.9c. Although the solution achieved by FEM-FCT is better than that of the ordinary
Taylor-Galerkin scheme, for steady state aerodynamic applications, where shocks are
only locally important, the additional cost of the high-resolution schemes does not make
them attractive for production runs. Adaptive refinement [101 is a much more effective
way of obtaining sharp shocks for steady flows.

11. Conclusions

It has been demonstrated how unstructured grids and high resolution schemes
may be combined, yielding FEM-FCT. The numerical examples indicate that a high
accuracy can be obtained economically for problems involving complex domains and/or
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adaptive mesh refinement. Furthermore, the 'equation-splitting' employed in classic
FCT-codes [13,18,19,201 has been extended by coupling or 'synchronizing' the limiters
of all the equations involved, without taking recourse to more costly Riemann-solver-
based monotone schemes. Points which still need to be addressed are the development
of a better theory for flux limiters for systems of equations and the combination of
FEM-FCT with unstructured multigrid methods [33] for the rapid solution of steady
state problems.

12. Acknowledgements

The authors would like to acknowledge the many fruitful discussions with S. Zale-
sak during the course of this work.

The first three authors would like to thank the Aerothermal Loads Branch of the
NASA Langley Research Center for partial support of this research under Grant No.
NAGW-478.

13. References

[1] P. Woodward and P. Colella, J.Comp.Phys. 54 (1984), 115.

[2] P.K. Sweby, SLAM J.Num.Anal. 21 (1984), 995.

[3] R.M. Beam and R.F. Warming, J.Comp.Phys. 22 (1978), 393.

(41 J.C. South - Recent Advances in Computational Transonic Aerodynamics; AIAA-
85-0366 (1985).

[5] A. Jameson, ASME J.Appl.Mech. 50 (1983), 1052.

[6] J.F. Thompson, Z.U.A. Warsi and C.W. Mastin - Numerical Grid Generation; El-
sevier (1985).

[7] M.J. Berger and J. Oliger, J.Comp.Phys. 53 (1984), 484.

[8] M.A. Yerry and M.S. Shephard, Int.J.Num.Meth.Eng. 20 (1984), 1965.

[9] S.H. Lo, Int.J.Num.Meth.Eng. 21 (1985), 1403.

[10] R. L5hner, K. Morgan and O.C. Zienkiewicz, Comp.Meth.Appl.Mech. Eng. 51
(1985), 441.

[11] F. Angrand, V. Billey, A. Dervieux, J. Periaux, C. Pouletty and B. Stoufflet -2-D
and 3-D Euler Flow Calculations with a Second-Order Accurate Galerkin Finite
Element Method; AIAA-85-1706 (1985).

[12] R. Lhner, K. Morgan, J. Peraire and O.C. Zienkiewicz - Finite Element Methods
for High Speed Flows; AIAA-85-1531-CP (1985).

[13] J.P. Boris and D.L. Book, J.Comp.Phys. 11 (1973), 38.

[14] P.L. Roe, J.Comp.Phys. 43 (1981), 357.

9



[15] B. van Leer, J.Comp.Phys. 14 (1976), 361. (1974).

[16] A. Harten, J.Comp.Phys. 49 (1983), 357.

[17] S. Osher and F. Solomon, Math.Comp. 38 (1982), 339.

[18] S.T. Zalesak, J.Comp.Phys. 31 (1979), 335.

[19] D.L. Book, J.P. Boris and K. Haimn, J.Comp.Phys. 18 (1975), 248.

[20] J.P. Boris and D.L. Book, J.Comp.Phys. 20 (1976), 397.

[21] J. Donea, Int.J.Num.Meth.Engng. 20 (1984), 101.

[22] R. L~hner, K. Morgan and O.C. Zienkiewicz, Int.J.Num.Meth.Fluids 4 (1984),
1043.

[23] O.C. Zienkiewicz - The Finite Element Method; McGraw Hill (1982).

[24] O.C. Zienkiewicz and K. Morgan - Finite Elements and Approximation; J. Wiley
and Sons (1983).

[25] A.K. Parrott and M.A. Christie - FCT Applied to the 2-D Finite Element Solution
of Tracer Transport by Single Phase Flow in a Porous Medium; to appear in
the proceedings of the ICFD-Conf. on Numerical Methods in Fluid Dynamics,
Reading, Academic Press, 1986.

[26] T.J.R. Hughes, M. Mallet and A. Mizukami - A New Finite Element For-
mulation 'or Computational Fluid Dynamics: II. Beyond SUPG; to appear in
Comp.Meth.Appl.Mech.Eng. (1986).

[27] M.A. Fry and D.L. Book, in Proc. 14th Int.Symp. on Shock Tubes and Waves
(R.D. Archer and B.E. Milton eds.), New South Wales University Press 1983.

[28] D.E. Fyfe, J.H. Gardner, M. Picone and M.A. Fry, in Springer Lecture Notes in
Physics 218, p.230, Springer Verlag, Berlin 1985.

[29] G. Sod, J.Comp.Phys. 27 (1978), 1.

[30] H.C. Yee, R.F. Warming and A. Harten, J.Comp.Phys. 57 (1985), 327.

[31] P. Colella - Multidimensional Upwind Methods for Hyperbolic Conservation Laws;
LBL-17023, Preprint (1983).

[32] A. Jameson, W. Schmidt and E. Turkel - Numerical Solutions of the Euler Equa-
tions by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes;
AIAA-Paper 81-1259 (1981).

[33] R. L~hner and K. Morgan - An Unstructured Multigrid Method for Elliptic Prob-
lems; Proc. of the Second European Multigrid Conf., K6In, W. Germany, October
1985. To appear.

10



K

El

E5 E2

Figure 1: Definition of elements and nodes



a) High-order scheme: Lumped-Mass Taylor Galerkin (niter=1)

b) High-order scheme: Consistent-Mass Taylor Galerkin (niter=3)

Figure 2: Passive advection of a square wave (1-D)

C=0.2, plot every 200 steps



a) High-order scheme: Lumped-Mass Taylor Galerkin (niter=1)

b) High-order scheme: Consistent-Mass Taylor Galerkin (niter=3)

Filmre 3: Shock propagation for Burgers equation (1-D)

h=0.1, At=0.2, plot every 51 steps



a) Solution at time t=O.O

b) Solution after 828 iterations Qrevolution).

i4

The perspective view has been rotated with the cylinder.

Figure 4: Passive Advection in 2-D: Zalesak's example [181
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Figure 5: Advection skew to the mesh (steady statcj (C.I.=0.05)



a) Cei independent for each equation

igure 6: Sod's Riemann-problem [29]
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b) Cei CeI (density)

'Igure 6: Sod's Riemann-problem (cont.)
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c) C.1 mina(Cj (density), CeL(energy))

'iqure 6: Sod's Riemann-problem (cont.)



3,) Grid b) Density distribution at t=9.3 (C.I.=O.1)
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Figure 7: Cylindrical blast wave
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a) Grid

b) Pressure distribution obtained for Taylor-Galerkin scheme (10,12J
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c) Pressure distribution obtained for FEM-FCT (0.I.=0.1)
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b) Pressure distribution obtained for Taylor-Galerkin scheme [10,12]
(O.I.=0.05)

c) Pressurc distribution obtained for FEM-FOT (C.I.=0.05)
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ABSTRACT

We describe the combination of two effective computational techniques for the
simulation of strongly unsteady compressible flows. These are a) a high resolution
scheme for unstructured grids (FEM-FCT), and b) an adaptive refinement method for
transient problems. The high resolution scheme is based on Zalesak's [111 generalization
of the FCT-algorithms due to Boris and Book [12-14], and is able to capture moving
and stationary shocks over two elements. For the adaptive refinement method the
classic h-enrichment/coarsening is employed in conjunction with a spatial finite element
discretization (triangles or tetrahedra). A modified interpotation theory error estimator
is derived and shown to be effective for the problems at hand. Several numerical
examples dlemonstrate that the schemes give results of excellent quality at minimal
cost.

INTRODUCTION

The aim of the present research effort is to develop efficient computational tech-
niques for the simulation of strongly unsteady flows past bodies of complex geometrical
shape. Typical examples of physical problems falling under this category are shock-
shock, shock-surface, and shock-structure interactions [1-31. By incorporating chem-
istry models into the partial differential equations (PDEs) describing the flows under
consideration, one would also be able to simulate detonation and flame propagation
[4,5].



The problem statement resulted in three computational design decisions:

1) As the geometry of the bodies under consideration is complex unstructured Krids in
conjunction with Finite Element Methods were pursued from the start.

2) As strong shocks are present in the flowfields simulated, a high resolution,
monotonicity-preserving algorithm for unstructured grids had to be developed. The
method, called FEM-FCT, is based un Zalesak's 111] generalization of the Flux-
Corrected Transport (FCT) algorithms of Boris and Book [12-14] to multidimensional
problems.

3) As the flowfield is largely smooth, with a few regions where strong gradients appear,
efficient adaptive refinement techniques for transient problems are required.

THE FLOW SOLVER: FEM-FCT

As stated above, high resolution, monotonicity preserving schemes must be devel-
oped in order to be able to simulate the stro'Ag nonlinear discontinuities present in the
flows under consideration. Although the pertinent literature abounds with high resolu-
tion schemes [6-10], only Zalesak's generalization f11] of the 1-D FCT schemes of Boris
and Book [12-14] can be considered a truly mutidimensional high resolution scheme.
We remark here that the use of unstructured grids requires such truly multidimensional
schemes, as the lack of lines or planes in the mesh inhibits the use of operator splitting.

Parrot and Christie [15] first analized FCT schemes in the context of Finite Ele-
ment Methods, and LUhner et.al. 116,171 extended these ideas further to include the
consistent mass which yields high temporal accuracy and to systems of equations.

FCT Defined

We consider a set of conservation laws given by a system of partial differential
equations of the form

OU 0 F, Of,'(1)

where the advective fluxes F. = F.(U) play a dominant role over the viscous fluxes
F,, = F,(U). For flows described by eqn.(1), discontinuities in the variables may
arise (e.g. shocks or contact discontinuities). Any numerical scheme of order higher
than one will produce overshoots or ripples at such discontinuities (so-called 'Godunov
theorem'). Very often, particularly for mildly nonlinear systems, these overshoots can
be tolerated. However, for the class of problems studied here, overshoots will eventually
lead to numerical instability, and will therefore have to be suppressed.

The idea behind FCT is to combine a high-order scheme with a low-order scheme
in such a way that in regions where the variables under consideration vary smoothly
(so that a Taylor expansion makes sense) the high-order scheme is employed, whereas
in those regions where the variables vary abruptly the low-order scheme is favored.
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The temporal iiscretization of eqn.(l) yields

U -
+ = U" + AU, (2)

where AU is the increment of the unknowns obtained for a given scheme at time
t = t". Our aim is to obtain a AU of as high an order as possible without introducing
overshoots. To this end, we re-write eqn.(2) as:

Un + 1 = U" + AU' + (AUh - AUI), (3)

or

U " + = U' + (AUh - AU'). (4)

Here AUh and AU' denote the increments obtained by some high- or low-order scheme,
whereas U' is the (ripple-free) solution at time t = tn+

1 of the low-order scheme. The
idea behind FCT is to limit the second term on the right-hand side of eqn.(4)-

U n+ 1 = U' + lim(AUh - AU'), (5)

in such a way that no new over/undershoots are created.

It is at this point that a further constraint, given by the conservation law (1)
itself must be taken into account: strict conservation on the discrete level should be
maintained. The simplest way to guarantee this for node-centered schemes (.rnd we
will only consider those here) is by constructing schemes for which the sum of the
contributions of each individual element (cell) to its surrounding nodes vanishes ('all
that comes in goes out'). This means that the limiting process (eqn.(5)) will have to
be carried out in the elements (cels).

We can now define FCT in a quantitative way. We follow Zalesak's exposition [111,
but modify the term 'flux' by 'element contribution to a node'. Those more familiar
with Finite Volume or Finite Difference schemes should replace 'element' by 'cell' in
what follows.

FCT consists of the following six algorithmic steps:

1) Compute LEC: the 'low-order element contribution' from some low-order scheme
guaranteed to give monotonic results for the problem at hand;

2) Compute HEC: the 'high-order element contribution', given by some high-order
scheme;

3) Define AEC: the 'antidiffusive element contributions':

AEC = HEC - LEC

4) Compute, for each node I, the updated low-order solution:

Ut = Un + LEC = U- + AU' , I= 1,.NPOIN, (6)
el
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5) Limit or 'correct' the AEC so that U' + ' as computed in step 6 is free of extrema
not also found in U1 or Ur :

AECc = Cel * AEC, 0< Cel < 1; (7)

6) Apply the limited AEC :
Un + 1 = Ul + Z AEC. (8)

el

The Limiting Procedure

Obviously, the whole approach depends critically on the all-important step 5 (see
above). We define the following quantities:

+

a) P-: the sum of all positive (negative) antidiffusive element contributions to node I

+ z max 1 S(0,AEC,,)

b) Q, : the maximum (minimum) increment (decrement) node I is allowed to achieve
in step 6 above

+
Q = - U'

where U'" (defined below) represents the maximum (minimum) value the un-

known U at node I is allowed to achieve in step 6 above.

c) R-:
R+ : min(1,Q+-/P -) IF P+ >0, P- <0

1 0 IF P+=0

Now take, for each element:

Cel = min(element nodes) R-+ if AEC >< 0,. (9)

Finally, we obtain Ui"" in three steps:

a) maximum (minimum) nodal U of U' and U':

u; {maxl(l U-)

b) maximum (minimum) nodal value of element

4



{ maXI(U;, U U)

where A, B, ..., C represent the nodes of element el.

c) maximum (minimum) U of all elements surrounding node I

m!s = max I (U,, U',..., U)
U""= j mai

where 1,2, ..., m represent the elements surrounding node I.

This completes the description of the limiting procedure. Up to this point we have
been completely general in our description, so that eqns.(1)-(9) may be applied to any
FEM-FCT scheme. In what follows, we restrict the exposition to the FEM-schemes
employed in the present work, describing the high and low-order schemes used.

The high-order scheme : Consistent-Mass Two-step Taylor Galerkin

As the high-order scheme, we employ a two-step form of the one-step Taylor-
Galerkin schemes described in [18,19]. The method has been expounded thoroughly in
[20,28]. We will only give a brief description of it here. Given the system of equations

OU OF i

t+ = 0, (10)

we advance the solution from t" to tn+I = t" + At as follows:

a) First step :
Un + L = U An t . Fil

b) Second step :

AUn = U + -1 - u -= -At. -- , l4+. (12)

The spatial discretization of (11) and (12) is then performed via the classical
Galerkin weighted residual method [20,28]. We remark that at t"n+ = t" + !At both
U and F are interpolated using piecewise constant functions, while at t" and t"+1 linear
shape functions are employed. In this way the values of U"+ ,Fn+ 4 may be readily
obtained at element centers (no matrix operations are involved). For (12) the following
system of equations is obtained:

IC .AU" = R", (13)
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where A'c denotes the consistent mass matrix [19], AU the vector of nodal increments,
and R the added element contributions to each node. As MA possesses an excellent
condition number, Eqn.(13) is never solved directly, but iteratively (typically, three
passes are sufficient [191). We finally recast the converged solution of Eqn.(13) into the
following form, which will be of use later on :

Mi .AUh = R + (MI - MA). AU h.  (14)

Here we have introduced the superscript 'h' for high-order scheme, and All denotes the
diagonal, lumped mass-matrix (see [19]).

The low-order scheme: Lumped-Mass Taylor Galerkin plus Diffusion

The requirement placed on the low-order scheme in any FCT-method is mono-
tonicity. The low-order scheme must not produce any artificial, c 'umerical, 'ripples'
or 'wiggles'. So far, we have simply added 'mass-diffusion' in the .,Atext of FEM-FCT
[16,171. This simplest (and cheapest) form of diffusion is obtained by subtracting the
lumped mass-matrix from the consistent mass-matrix for linear elements:

DIFF = Cd (M, - M) -U'. (15)

The element matrix thus obtained for 2-D triangles is of the form

2 -1

(MC -MA10. - 4 I- -1 2 -1 (16)
12 ti -

where A denotes the element area and Cd the diffusion coefficient employed. A similar
expression can be derived for tetrahedra in 3-D.

Observe that we cannot simply add this diffusion to the high-order scheme in order
to obtain monotonic results for the problems at hand, as a multipoint-coupling of the
right-hand side occurs due to the consistent mass-matrix employed in the high-order
scheme . The imposition of monotonicity can nevertheless be achieved by using a
lumped mass-matrix instead. As the terms originating from the discretization of the
fluxes F i in (10) are the same as in (12), the low-order scheme can then be written as

Mi AU' = R + DIFF, (17)

where we have introduced the superscript T for low-order scheme.

Computation of the antidiffusive element contributions

Subtracting (17) from (14) yields the equation

M. (AUh - AU') = R + (Aft - M,) .AUh - R - DIFF, (18)
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or or • (AU h - AU') = (ll - M)• AU h - DIFF (19)

Note that all terms arising from the discretization of the fluxes F in (10),(12),(17)
have now disappeared. This is of particular importance if the antidiffusive element
contributions must be recomputed (small core memory machines), and real gas effects
are taken into account (table look-up times are considerable) or real viscosity effects
have to be included (Navier-Stokes equations).

Limiting for Systems of Equations

The results available in the literature (11-141 and our own experience [16 has
shown that very good results can be obtained for a single PDE. However, when trying
to extend the limiting process to systems of PDEs, no immediately obvious or natural
limiting procedure becomes apparent. Obviously, for 1-D problems one could advect
each simple wave system separately, and then assemble the new solution at the new
time step. However, for multidimensional problems such a splitting is not possible, as
the acoustic waves are circular. FDM-FCT-codes used for production runs [3,41 have
so far limited each equation separately, invoking operator-splitting arguments. This
approach does not always give very good results, as may be seen from Sod's compar-
ison of schemes for the Riemann problem [21], and has been a point of continuing
criticism by those who prefer to use the more costly Riemann-solver-based, essentially
one-dimensional TVD-schemes 16-91. It would therefore seem preferable to introduce
'system character' for the limiter by combining the limiters for all equations of the
system. Many variations are possible and can be implemented, giving different perfor-
mance for different problems. We just list some of the possibilities here, commenting
on them where empirical experience is available.

a) Independent treatment of each equation as in operator-split FCT: this is the least dif-
fusive method, tending to produce an excessive amount of ripples in the non-conserved
quantities (and ultimately also in the conserved quantities).

b) Use of the same limiter (C. 1) for all equations: this produces much better results,
seemingly because the phase errors for all equations are 'synchronized'. This was also
observed by Harten and Zwaas [22] for a class of schemes very similar to FCT.

c) Use of a certain variable as 'indicator variable' (e.g. density, pressure, entropy).

d) Use as the limiter for all equations the minimum of the limiters obtained for the den-
sity and the energy (C.1 = nin(C1(density), C6 ,(energy))) : this produces acceptable
results, although some undershoots for very strong shocks are present.

For the results presented here, this last option was employed.

TRANSIENT ADAPTIVE REFINEMENT

The advantages of adaptive refinement schemes for the efficient simulation of
steady state flow fields have by now been demonstrated by several authors 123-31).
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Storage and CPU requirements will typically be reduced by more than an order of
magnitude (as compared to uniform refinement) for most of the problems falling into
this class (steady state, advection dominated) when adaptive refinement schemes are
employed.

Recently, several authors have studied adaptive schemes for transient problems [32-
35]. Several additional restrictions have to be placed on the adaptive schemes employed
here in order that they achieve similar savings in CPU and storage requirements:

- the refinement scheme/logic has to be fast, as the grid is modified many times during
the computation;

- the refinement scheme should not be memory (storage) intensive, as it becomes an
integral part of the code;

- the original mesh should be recovered after the feature has passed, in case that the
feature returns (e.g. a shock reflection).

This in turn implies that:

- No directional refinement (30,311 can be used, as these schemes appear as too storage
and CPU-intensive.

- Classic h-enrichment/coarsening must be employed, as it does not require a major
storage overhead and due to its simplicity lends itself easily to vectorization.

- Only one level of refinement/coarsening is employed per 'mesh change' in order to
minimize the logic involved and thus CPU requirements.

- For triangles, successive subdivision of a triangle into two (see Figure 1) has to be
avoided. This in turn reduces the number of refinement cases considerably.

A Modified Interpolation Theory Error Indicator

Many possible error indicators have been suggested in the literature (see [23-35]
and many other publications), and numerical experience indicates that all perform
similarly well. However, in the present context, the following requirements must be
met:

- The error indicator must be fast.

- As the feature may move only very slowly or come to a standstill (e.g. a shock
entering a very dense region), the error indicator must also be reliable for steady state
applications.

- As systems of equations are solved, and more than one 'key-variable' (271 may be
employed, the error indicator should be dimensionless.

- In order to be applicable to a large class of problems, the error estimator should be
bounded (independently of the solution), so that preset refinement/coarsening toler-
ances can be employed.
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In order to meet these requirements, a modified form of the classic interpolation es-

timates [23,24] used for steady state computations [28-31] has been adopted. These

estimators make use of an appropriate seminorm for the detection of those regions
which need further refinement or coarsening, e.g. the H2-seminorm [23,24,28-31,34]

Ilu - uh110 < c h. h ul 2 , (20)

where u denotes the exact and u h the approximate solution, c is a mesh-size independent

constant, h is the characteristic mesh size, and

IU12 02 2 (21)

Second derivatives are justified here because the shape functions used in the finite el-

ement discretization are linear. Numerically, we first evaluate the second derivatives

at the nodes via a variational statement [29], and then approximate the integral (21)
'conservatively' by taking for each element the maximum second derivative at the asso-

ciated nodes. For linear elements of constant length h in 1-D, one obtains for the first

step at the nodes :
= -- h - - lUI+I - 2. U1 + UI-..il. (22)

The modified error indicator is given by:

IUi+i - U1I + U - 2-UI + c1U.-+ + 2-jUzJ + lUil (23)

We remark the following properties of this modified error indicator:

- By dividing the second derivative by the 'jumps' (gradients), the 'eating-up' effect in

the presence of a very strong shock is avoided (i.e. only the value of the normalized

H2-seminorm is of importance, not the magnitude of the H2-seminorm as such).

- Normalizing in this way also has the advantage that the error indicator becomes

dimensionless, so that more than one 'key-variable' can be used without encountering

dimensioning problems.

- Moreover, the modified error indicator is now bounded (0 < El < 1), so that preset

tolerances can be employed (this is of particular importance for transient problems).

- The terms following c are added as a 'noise' filter in order not to refine 'wiggles' or
'ripples' which may appear due to loss of monotonicity. The value for ( thus depends

on the algorithm chosen to solve the PDEs describing the physical process at hand.

The generalization of this error estimator to multidimensional situations is as fol-

lows:

ZEl F,(fn,( N, N,JdQl' Uj)2  (24)
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where N' denotes the shape-function of node I.

After having determined the values of the error indicators in the elements, all
elements lying above a preset threshold value CTORE are refined, while all elements
lying below a preset threshold value CTODE are coarsened.

Grid Logic

As described above, we limit the number of refinement/coarsening levels per mesh
change to one. Moreover, we allow only refinement of a triangle into two or four and
avoid the successive refinement of a triangle into two. This implies that there exist
only six possible cases for refinement and three for coarsening. These cases are shown
in Figures 1,2.

In order to identify the 'parent' and 'son' elements of any element, six integer
locations per element were employed in the present situation. The first three integers
store the new three neighbor elements ('sons') of an element that has been subdivided
into four (the center element of the four is kept as 'parent'). In the fourth integer the
element from which the present element originated (the 'parent' element) is stored,
while the fifth integer denotes the side of the 'parent' element this element came from.
Finally, in the sixth integer location the refinement level is remembered. These six
integer locations per element are sufficient to construct further refinements or to re-
construct the original grid. Observe that no classical tree-structure is employed.

The introduction of further nodes (refinement) is performed by first identifying the
sides that require refinement, and then labelling these sides with the new node numbers.
By doing this, the introduction of coordinates, values for the unknowns and boundary
conditions at the new nodes can be performed independently of the introduction of
new elements. In principle, these operations could be performed in parallel. For more
details on the grid logic, see [35].

EXPLOITATION OF SUPERCOMPUTING HARDWARE

A key question which has to be accounted for when solving large-scale transient
problems on today's supercomputers is whether the algorithms lend themselves to vec-
torization. Although this particular issue seems meaningless to many theoreticians,
practical experience indicates that the difference in computing times between a fully
vectorized code and one that does not lend itself to vectorization is more than a factor
of 10 (1000% !). This figure is likely to increase even further when massively parallel
computers become available. Therefore the inherent degree of parallelism of any new
algorithm may decide more and more its competitiveness against other methods.

Both FEM-FCT and the described mesh refinement/coarsening process can
be vectorized to a large extent, particularly if the machine available vectorizes
GATHER/SCATTER loops efficiently. The only non-trivial operation that has to
be re-coded with some care is the so-caled SCATTER-ADD process which occurs
when assembling a 'right-hand side vector'. By reordering the element numbering, this
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semi-recursive operation can be rearranged into a set of SCATTER-loops, thus again
operating in vector mode.

On the CRAY-XMP-12 at NRL, for typical runs (a mesh change every 5 steps), the
CPU-time spent in non-vectorizable loops is of the order of 1%, indicating that more
than 99% of all operations are performed in vector mode. The processing rate for the
consistent mass FEM-FCT algorithm is of 58psec per grid point per time step in 2-D,
while the grid adaptation alone requires about 100psec per grid point per mesh change.
Although this last figure seems high, one has to bear in mind that the adaptation is
performed only every 5-10 timesteps, which means that effectively it is much lower.
From previous experience [36], one can expect these processing rates to be similar on
a one-pipe CYBER-205.

NUMERICAL EXAMPLES

All numerical examples shown involve shock-structure and shock-shock interac-
tions. It was found that for this class of problems and the algorithm employed the
following choice of refinement/coarsening parameters produced acceptable results:

- refinement tolerance: CTORE=0.3

- coarsening tolerance: CTODE=0.1

- noise parameter : c =0.2

- key variable for error indicator: density

We also tested other key-variables as error indicators, but it was found that for the
class of problems under consideration, i.e. compressible Euler equations, the density
gave the best results (pressure is not a good error indicator at contact discontinuities).

Unless otherwise stated this set of parameters was employed for all the examples
shown below.

Mach Reflection on a Double Wedge

The problem statement, as well as the solutions obtained, are shown in Figures
3a-3d. The aim of this simulation was to reproduce the complex flow structures ob-
served in experiments [37] (see Figure 3e). Initially, a weak shock (M. = 1.29) travels
towards the double wedge from the right (the angles were chosen so as to agree with
those in case 5 of the shock tube experiments of Ben-Door and Dewey [37]). The shock
then reflects off the the first wedge, forming a Mach stem and a contact discontinuity.
Although the contact discontinuity is weak (see contours of density), the error indi-
cator nevertheless senses it, accordingly increasing the grid resolution in this region.
The shock then reflects off the second wedge, forming the complex flow features seer, in
Figures 3c,3d. Observe that the grid has been well adapted to the physical complexity,
and that the simulation reproduces essentially all the gas-dynamic discontinuities seen
with optical diagnostics in the experiment (Figure 3e). As the first reflected shock
becomes weaker and weaker, in some parts the error indicator lies below the coarsen-
ing tolerance, therefore producing the 'ragged' grid seen in Figures 3c and 3d. The
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discrepancy between experiment (Figures 3e) and computation (Figures 3a-3d) stems
mainly from the fact that the length of the first wedge was larger in the experiment
than in the computation. As we employed the ideal gas equation of state for this run,
this could yield another possible explanation for the discrepancies.

Shock over an Indentation

The problem statement, as well as the solutions obtained at different timesteps
during the numerical simulation are shown in Figures 4a-4e. A strong shock (M, = 25)
travels over an indentation, producing a bow shock and a rarefaction (Figures 4a,4b). It
then collides with the right wall of the indentation and bounces back, producing several
shock/shock and shock/contact discontinuity interactions (Figures 4c,4d). Observe the
level of physically relevant detail that the scheme is able to reproduce, e.g. the triple
shock produced at T=0.12 (see Figures 4d and 4e). The velocity pattern generated by
these interactions has been magnified in Figure 4e, and shows a large residual vortex,
as well as the different shock fronts and other discontinuities.

For the numerical examples shown, the savings in CPU and storage requirements
due to adaptive refinement were of the order of 10, a figure usually quoted with the
technological leap of one generation in supercomputing technology.

CONCLUSIONS

The combination of FEM-FCT and adaptive refinement by classic h-
enrichment/coarsening has been presented. It was found, that the combination of
these two techniques yields results of excellent quality at minimal cost for strongly
unsteady compressible flows. Shocks are captured over two elements, and the savings
in both CPU and storage requirements due to adaptive refinement are of the order of
10 (as compared to uniform refinement) for typical problems.

Further extensions of the present work include

- better limiters for systems of equations in the context of FEM-FCT;

- inclusion of chemistry and real viscosity into the current inviscid, nonreacting flow
models;

- extension of the present techniques to 3-D problems;

- incorporation of directional refinement techniques for transient problems;

- combination of different element types (quads/triangles) in a single code.

Some of these extensions are already being implemented and examined by the

author and several other groups worldwide.
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Figure 3a.: Shock Reflection over Double Wedge
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ligure 3b: Shock Reflection over Double Wedge (cont.)
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Figure 3c: Shock Reflection over Double Wedge (cont.)
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Figure 3d: Shock Reflection over Double Wedge (cont.)
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Fizure 3e: Shock Reflection over Double Wedge (experimental data)
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Figure 4a: Shock over indentation
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Figure 4b: Shock over indentation (cont.)
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.Figuire 4c: Shock over indentation (cont.)
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Figure 4d: Shock over indentation (cont.)
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Chapter 15

Adaptive Grid Refinement for the
Compressible Euler Equations

. L6hner, K. Morgan, and 0. C. Zienkiewicz

15.1 INTRODUCTION

The overall aim of our research work is to use the finite element method to
solve large realistic three-dimensional high-speed compressible flow problems
of practical interest. To date, we have concentrated on developing algorithms
for inviscid fluids where the flow is governed by a system of hyperbolic conser-
vation laws of the form

aU OF= - + -x =0(15.1)
at ax1

where the summation convention has been employed and the range of j depends
upon the number of space dimensions. With the overall aim of the work in
mind, we have, from the outset, restricted consideration to solution algorithms
which appear to be optimal in terms of CPU-time and storage requirements.
It is clear that such an optimal algorithm will be characterized by the ability
to produce an accurate solution with the use of the minimum amount of nodes/
elements. This in turn implies that the basic solution algorithm should be
capable of adaptively refining the mesh as the solution proceeds. If it is required
to accurately follow the transient behaviour of the solution of Equation (15.1),
then the adaptive procedure should also be capable of derefining certain portions
of the mesh.

In this chapter, we describe our first attempts to develop an adaptive refine-
ment strategy. The methods proposed will be designed to produce accurate
steady-state solutions to Equation (15.1) and will not make any assumptions
about the structure of the finite element grid.

15.2 EXPLICIT TIME-STEPPING SCHEME

The solution of Equation (15.1) is advanced towards the steady state by means
of an explicit Euler-Taylor-Galerkin procedure. The Taylor-Galerkin family

281
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of solution methods for advection-dominated problems was first introduced by
Donea [I]. The authors [2,3] have described the use of an explicit Euler-
Taylor-Galerkin procedure for obtaining both transient and steady-state
solutions to Equation (15.1). The procedure uses Taylor expansions in time to
produce the time-stepping scheme

OF At2 a ( OF,\
U" " -At--+-- An - (15.2)

Ox1  2 ax 1\ ( xk )

where a superscript n denotes an evaluation at time t = t , t, + t. + At, and

AFj (15.3)1dU

Piecewise linear interpolation is used for U, Fj, and piecewise constant inter-
polation is used for A. The application of the Galerkin weighted residual
method [4] then leads to an equation system of the form

M(CM + - C") = fn (15.4)

where M is the standard mass matrix and 10 is the vector of nodal values of U.
If only steady-state solutions are of interest, the mass matrix may be lumped
and the value of ]Dn + ' obtained immediately. The use of the A1 matrices is
computationally expensive [5] and this method has been superceded by a two-
step scheme [3] of improved efficiency. A detailed discussion of the application
of the commonly encountered boundary indications within this formulation is
discussed elsewhere [6]. For problems involving strong shocks the solution of
Equation (15.4) is smoothed by the application of an artificial viscosity before
proceeding to the next time step. This has been accomplished using the models
of Lapidus [7] and also MacCormack and Baldwin [8], but we are currently
favouring a method based upon a consistent extension of the Lapidus model
to multidimensional configurations [9].

15.3 REQUIREMENT FOR ADAPTIVE REFINEMENT

Ideally, we would like to ensure that at any stage in the solution process

maxI U, -LI< (15.5)
at

where U, denotes the lth component of the solution vector U, 1 denotes the
corresponding component of the approximate solution, e is a specified tolerance,
I1 denotes an appropriate measure, and fl, is that part of the solution domain
Q2 in which we wish to achieve this accuracy. In practice we choose I = 1 so
that it is the density which is subjected to the requirement of Equation (15.5).
For hyperbolic problems, errors introduced in certain parts of the domain
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propagate throughout the entire domain and !,o we are, in general at least.
forced to require that

maxIU, - U, I<e (15.6)
fi

For reasons of programming convenience and computer execution speed, we
have attempted to satisfy this criterion by ,neans of an a posteriori adaptation
of the grid. As only a limited number of degrees of freedom can (and will,
eventually) be employed, the optimal mesh will have the property that the error
is evenly distributed over the elements [10]. Within the context of our explicit
time-stepping procedure, the idea is then to advance the solution to the steady
state on a fixed mesh, then adapt the grid, and produce a new solution. The
adaption process is repeated until a solution of the desired accuracy results.

15.4 MEASUREMENT OF THE ERROR

Nothing has been said about the way in which the measurement of the error
in Equation (15.6) is accomplished. Several possibilities exist and these have
been discussed and compared elsewhere [11]. We have chosen to employ locally
classic theoretical (a priori) error estimates [12, 13]. This method does not require
the introduction of further degrees of freedom and only first or second derivatives
need to be evaluated. For elliptic problems, the appropriate error measure
appears naturally as the energy norm, whereas for hyperbolic problems the
theory is far from complete. Nevertheless, one can assume, in a least squares
sense, that

I U, - 0 1 < chI U 111  (15.7)

where c is an unknown constant, h is a representative element length, I'I denotes
the L2 norm, and Il, the appropriate seminorm [14]. As only a uniform distri-
bution of errors for all elements is the aim of the refinement process, and since
the exact solution U is unknown, the practical form of the requirement becomes

h'I C 1 11 = constant (15.8)

In the commonly used finite element manner, this can be employed with I = I
or I = 2.

15.5 REFINEMENT STRATEGY

Two methods of mesh refinement can be readily implementcd in conjunction
with the refinement indicator of Equation (15.8). In the first, the total number
of nodes and elements remains fixed but their position is altered, whereas in
the second, the nodes are fixed but new nodes and elements are added. We
have pursued both approaches and will describe the implementations here.

3
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15.5.1 Mesh movement

When a mesh refinement is required, the element sides are considered as springs
of prescribed stiffness and the nodes are then moved until the spring system is
in equilibrium. Consider two adjacent nodes i and j belonging to elements E,
anu E2, as shown in Figure 15.1. The force fij exerted by the spring connecting
these two nodes is taken to be

f = ci(Xi- X ) (15.9)

where c0j is the stiffness of the spring and Xi and Xj are the position vectors of

nodes i and j respectively. Assuming that

IX- Xjl ; h (15.10)

the refinement requirement of Equation (15.8) will be satisfied, when I = 1, if
we define

cij = I Cli 1 = 10. 1E, + 10 (15.11)

and allow the mesh to move to an equilibrium position. This means that the
vector f(X) of nodal forces should equal zero; this is achieved by viscous
relaxation [15], i.e. by solving the system of equations

dX
c- f(X) (15.12)

where c is a lumped matrix with diagonal entries

c,,= ci (15.13)

£11

Ii /
2(

Figure 15.1 Idealization or the element sides as a system of springs
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and X is the vector of nodal coordinates. The system is solved by using an
explicit time integration and convergence is assumed when the decrease of the
residual R becomes slow. With the residual after step (m + I) defined by

Rm = J[(Xn+ t - Xw)r(Xm +I - X)] (15.14)

the solution is taken to be converged when

I R " 1 - Rml < aRm  (15.15)

with a usually of the order of 0.05.
This technique is not always guaranteed to produce meshes of a better quality,

as badly formed elements can appear in regions (such as shocks) in which the
spring coefficients c,, vary rapidly over a small distance. To avoid this problem,
the definition of cj given in Equation (15.11) is replaced by the expression

+Ac (15.16)

This blending function definition for the spring stiffnesses (shown diagram-
matically in Figure 15.2, ensures that excessively small or excessively large
elements are avoided and that meshes of acceptable quality are produced.

After having moved the mesh, the values of the unknowns at the new grid
points are found by interpolation. In order to avoid a costly, general inter-
polation procedure, the assumption is made that the nodes will not move beyond
the patch of elements surrounding them. This is justified, as in zones of high
gradients this will always be the case, since the elements are 'compressed', while
for zones of low gradients, the error thus introduced is small. The elements

c(glJ

I+A

l.Ag

9

Figure 15.2 Relation between spring stiffness and g
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-x

Figure 15.3 Patch of elements sur-
rounding node N

surrounding each node are stored before the mesh is moved. When the new
position of the notes is reached (N -, N' in Figure 15.3), the element whose
centre is closest to N' is used for the interpolation.

As the changes of element size which are produced can be considerable, badly
deformed elements may appear during the course of the computation. It has
been found that the best way of dealing with this problem is simply to remove
such elements from the calculation. With reference to Figure 15.4, let us define
the following geometrical quantities for a particular element: Smin is the shortest
element side; , j the nodes of the shortest element side; S1, S2 the remaining
element sides, D = min (S IS,,i., S2/Smi). An element is generally considered to
be ill-deformed if D > b, where b is a chosen but arbitrary number. When such
an ill-deformed element is encountered, three different possibilities exist:

C

S I E

A

Figure 15.4 Treatment of badly deformed elements
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(a) The nodes iandjlie on the boundary of the solution domain. If D > 2 and one
of the nodes if fixed, then the free node is removed together with th'.. clement.

(b) Either node i or j lies on the boundary of the solution domain. If D > 2 then
the other element that is contiguous with the side ij is examined. If it also
satisfies D > 2 then the boundary node is kept while the two elements as well
as the other node are removed.

(c) Node i andjlie within the solution domain. IfD > 2.3 the contiguous element
is examined and if it also satisfies D > 2.3 then both elements and one node are
removed from the mesh.

15.5.2 Mesh enrichment

When the mesh is refined using mesh enrichment, we sweep over all elements
of the mesh and determine P3, which is the maximum value of the refinement
indicator, i.e.

/= max h'10 11 (15.17)
elements

The enrichment strategy is then to refine all these elements for which the
indicator is larger than a certain proportion of this maximum value, i.e. all
elements for which

h'i0 111 > a3 (15.18)

where a is normally chosen to be 0.6. The basic refinement process is to divide
each element into four smaller elements as shown in Figure 15.5. To avoid the
problem of'hanging nodes' the refined region has to be surrounded by a transi-
tion region in which certain elements are subdivided into two smaller elements.
A full discussion of this method has been given elsewhere [3, It, 13, 16] and
need not be repeated here. A recent paper by Palmerio [17] uses a similar
refinement strategy but a different refinement indicator.

Figure 15.5



288 Estimates and Adaptive Refinements in Finite Element Computations

15.6 NUMERICAL EXAMPLES

Two problems have been chosen to illustrate the application of the adaptive
refinement processes discussed above. It should be noted that all the results
shown were obtained using a staggering procedure which enables the solution
to be advanced with different time steps in different regions of the mesh [18].
This technique is essential for economic computing as the element sizes may
vary by orders of magnitude.

15.6.1 Supersonic flow past a wedge

The problem specification and the solution domain are shown in Figure 15.6(a).
Also shown in this figure is the initial mesh discretization for the case in which

p - 1.125
u - 1020.0
e z 727 350.0

to)3(o) 1,440242

p = 1.125
= 1020.0

* = 727 350.0

Mt- 3

(b) 2

Figure 15.6 Supersonic flow past a wedge: (a) initial configuration and (b) after 300 steps
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adaptive mesh refinement is to be achieved by mesh movement. This mesh was
kept fixed for 100 time steps and then moved every 40 steps over the next 200
steps. The final mesh is illustrated in Figure 15.6(b). During the mesh movement
procedure about 120 elements (or 10 per cent. of the total elements present)
were removed from the calculation because they were judged to be badly
deformed according to the criteria arrived in the previous section. To illustrate
the gain in accuracy attainable by moving the mesh, the solutions obtained on
the original mesh and on the moved mesh are shown in Figure 15.7. The
superiority of the moved mesh solution is clearly apparent.

When this problem is solved using mesh enrichment, the chosen initial mesh
is coarser, as shown in Figure 15.8. The solution was advanced on this mesh
for 100 steps and then the mesh was refined. A further refinement was performed
after another 100 steps of the calculation. The computation ceased after a further
50 time steps. The sequence of grids produced is shown in Figure 15.8 and the

(a)

(b)

Figure 15.7 Density solution obtained (a) without mesh movement and (b) with
mesh movement
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p1.125
u 1020.0
e =727 350.0

Mo=3

p z 1.125
U x 1020.0
e =727 350.0

(b) 0

p =1.125
u x 1020.0
e = 727 350.0

Mc:= 3

(c)20

Figure 15.8 Supersonic flow past a wedge: (a) initial configuration, (b) after 101 steps, and (c)
after 201 steps
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(a)

(b)

(C)

*- Figure 15.9 Density after (a) 100 steps, (b) 200 steps, and (c) 250 steps
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solutions obtained are given in Figure 15.9. The improvement in solution quality
is again evident.

15.6.2 Supersonic flow past a nose cone

The problem specification and the solution domain are shown in Figure 15.10(a).
Also shown is the initial discretization for a run employing mesh movement.
The mesh was moved every 25 steps for the first 200 steps and then moved
again after a further 50 steps. The meshes and solutions produced are given in
Figure 15.10(b) and (c). It should be noted that, although in the initial discreti-
zation consideration was given to the fact that more elements were needed near
the cone, the changes in element size which have been produced are still consi-
derable; near the inflow boundary the element size has nearly doubled, whereas
near the cone the element size has almost halved.

For the solution of this problem using mesh enrichment, the initial discreti-
zation is illustrated in Figure 15.11. This mesh was enriched every 100 steps
for 300 time steps and then a further 20 steps were performed. The grids produced
and the corresponding solutions are shown in Figures 15.11 and 15.12, and it can
be seen how the detached shock becomes the driving refinement phenomenon
after the first two refinement steps.

M)=2

- 2

(a)_.
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AfO=2
p =1
4/ =2

1.2

(b)8

1.6

1.8

1.2

(c)

Figure 15.10 Supersonic flow past a nose cone: (a) original mesh, (b) mesh after
250 global steps (also mesh after 200 global steps), and (c) density after 250 global

steps
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(a )

Fgure 15.11 Grids produced after (a) 100 steps. (b) 200 steps, (c) 300 steps, and (d) 320 steps
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10I (d)

Fig.'e 15.12 Density after (a) 100 steps. (b) 200 steps, (c) 300 steps, and (d) 320 steps

15.7 CONCLUSIONS

An adaptive grid refinement procedure for producing steady-state solutions of
the compressible Euler equations has been described. It can be seen from the
numerical examples presented above that adaptive mesh refinement can greatly
improve the quality of the solution with minimal extra costs. At present it is
not yet clear which of the two strategies discussed is to be preferred. Obviously
mesh movement has the limitation that only a certain degree of change in
element size can be achieved by it-usually not more than 1:4-whereas no
such limitation exists for mesh enrichment strategies. Therefore, if no sophisti-
cated mesh generator is available, or if the analyst has no knowledge of the
final solution, mesh enrichment will be preferable. On the other hand, for many
problems the analyst has some knowledge about the final solution, and accor-
dingly can construct a mesh that is near optimal. In this case mesh movement,
due to its simplicity, would be the obvious choice.
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A final remark that has to be made is that the adaptive refinement techniques
presented here were conceived for steady-state problems and for transient
problems in which the areas that are to be refined do not vary greatly in time
(boundary layer separation, buffeting, etc.). For transient problems where the
areas that need refinement traverse large portions of the domain under consi-
deration (eg. shock propagation) a modified strategy will be required.
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AN ADAPTIVE REFINEMENT PROCEDURE FOR TRANSIENT PROBLEMS

ARISING IN CFD

R. Lbhner
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J.P. Boris
Laboratory for Computational Physics

Naval Research Laboratory, Washington, D.C., 20375

Our efforts are directed towards the efficient solution of transient problems which re-
quire a high degree of spatio-temporal resolution. Typical practical problems which fall
under this category are impact of shock waves on geometrically complicated structures,
detonations, shock-shock interactions and shock reflections. We first devised a high resolu-
tion scheme for unstructured grids [1] which handles the geometrical complexity typically
encountered when solving practical problems, and then to employed adaptive refinement
in 2-D [2] in order to enhance the resolution in regions where this is needed. The extension
of the adaptive refinement scheme to 3-D is at present under intensive development.

Any adaptive refinement scheme for transient problems: 1) must be fast (and therefore
must lend itself to vectorization/parallelization), as the grid adaptation has to be performed
many times, 2) should not be storage intensive, as the grid adaptation process becomes an
integral part of any code, 3) should recover the original grid after the feature has passed,
as the feature that has been refined may pass again (e.g. shock reflection).

In order to meet these requirements we decided to use classic refinement, allowing only
one level of refinement/coarsening per mesh-change. In this way, only 6 refinement and 3
coarsening cases are possible in 2-D. These are depicted in figure 1. This very low number
of cases greatly simplifies the vectorization of the algorithm.

As error indicators we employ a modified interpolation error estimate, which in 1-D
for a regular grid takes the form:

In, J~ +1 - 2. -U, + u,-_ (1
JE, 1 -In,+,i- i11+c[~+1 2. J~l+ JUi_,[]

This modified error indicator has the following properties: 1) by dividing the second deriva-
tive by the 'jumps' (gradients) the 'eating-up' effect in the presence of a very strong shock is
avoided (i.e. only the value of the normalized H2-seminorm is of importance, not the mag-
nitude of the H2-seminorm as such), 2) normalizing in this way also has the advantage that
the error indicator becomes dimensionless, so that more than one 'key-variable' can be used
without encountering dimensioning problems, 3) moreover, the modified error indicator is
now bounded (0:5 E. < 1), so that preset toleraaces can be employed (this is of particular
importance for transient problems), 4) the terms following c are added as a 'noise' filter in
order not to refine 'wiggles' or 'ripples' which may appear due to loss of monotonicity. The
value for e thus depends on the algorithm chosen to solve the PDEs describing the physical
process at hand. This error indicator can be generalized for multidimensional problems
(see [21).
An example: Weak shock hitting a double wedge: as a typical example we consider the
simulation of a weak shock (M, = 1.29) that collides with a double wedge. The solu-
tion at T=6.5 is shown in figure 2_• The savings in CPU-time and storage as compared



to a uniformly refined grid were more than a factor of 10, and the CPU time spent in non-
vectorizable loops was less than 1 % on a CRAY-XMP-12. These numbers show clearly that
also for transient problems, adaptive refinement techniques offer considerable advantages.

We plan to present more results and a better descripton of the schemes employed at
the conference.
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